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This work involves further development of the
Recursive-IDPCM image data compress:ion method. The goal of

this work is to make =he Recursive-_DPCM more efficient

[a)

by

¥

lout increasing the <coding <complexity by adaptive
schemes.

The details of adaptive schemes are discussed.
Several algoritams of subimage activity classification are
proposed and evaluated. Optimum quantizers are designed

according to data sources to minimize quantization error.

(XD}

Difference data are gquantized adaptively based c¢n :he
objective measure of subimage activity at each recursion.
The result of the computer simulation demonstrates a high
compression ratio with a good subjective reconstructed
image fidelity without drastically increasing computation
time over that required for Recursive-IDPCM has been

achieved.
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CHAPTER 1

INTRODUCTION

with the continuing growth of modera communication
technology, the demand for image transmission and storage is
increasing rapidly. Limitations on bandwidth for
transmitting image data over digital communication channels
have led researchers to look for efficient and Zfeasible
methods <to compress image data under a given amount of
distorction. Before discussing various data compression
algoritams, it is necessary to examine how image data can be
compressed.

The key point is that a large amount of redundancy
exists in a uniformly sampled image. This redundancy can be
explored both in the frequency and spatial domain.
Removing, or at least reducing the redundant information
from the original image, is the goal of data compression.
Figure L contains the cosine transform of a 32 bv 32 image.
It can be seen that the energy in the transform domain tends
to be c.ustered into a relatively small number of transform
samples in the low-frequency region. To achieve data

£

compression, transform samples of low magnitude c¢an be

discarded, or coarsely quantized in a digita'l transmission
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INTRODUCTION

This is the final report for the Grant Year 1984-1985 on Grant
Number AFOSR-81-0170. During this year two pieces of research were
concluded under sponsarship of the Grant. NThe two research activities are
included as two separate divisions of this research report. The research
activities are as follows:

1. Adaptive Recursive Interpolated DPCM for image data compression
(ARIDPCM). A consistent theme in the research supported under Grant Number
AFOSR under Grant AFOSR-81-0170 has been novel methods of image data
compression that are suitable for implementation by optical processing.
Initial investigations led to the IDPCM method of image data compression.
Subsequent modifications to the IDPCM algorithm were investigated, and led
to the improvement of the algorithm for both image quality and decreased
bit rate. The ARIDPCM version of the algorithm is the most powerful form
yet deveioped., The ARIDPCM algorithm was fully demonstrated in a M.Sc.
thesis by Mr. Eng Yuan Fu. This thesis is included as the section of this

report entitled "ARIDPCM.,"

2. Deblurring images through turbulent atmosphere. A common

problem in astronomy is the imaging of astronomical objects through the ! ]
turbulence caused by microscale fluctuations of the atmosphere. The [1
|
. . _ . U
microscale fluctuations limit the resolution of any object by ground-based ‘
telescope, the phenomenon of stars "twinkling® being the most commonly J
Acayabinty Code
. TR TR T
it | SP\:LIL”
L]
._._._[_ l_.. a—— L ...... —
. - P P A R ™ Lo L P S e L w)"e "p“-‘.\_'._\_-\ L3y i
. ;".", "u-.,' et -'_,;‘J'_‘,,:'_- '_-.'_l.' f.‘,‘-w - J‘ = 4“.4'\- “f ke -f:: e .—,'\.',"--," « ‘. ' - " e I\ ‘.' ' ‘.'«' h ‘;' > (\v’?* »
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observed form of this degradation. This problem also has military

significance in limiting the ground-based observation of satellites in
earth orbit. As concerns about SDI arise, the observation of Soviet
satellites becomes more important, and this observation is limited by
atmospheric turbulence.‘Research has been conducted under Grant Number
AFOSR-81-0170 to study the ability to use techniques such as optical and
digital computation in removing the blur from astronomical images caused by
turbulence. This research culminated in a Ph.D. thesis by Dr. Karen West.

This thesis is included as the section of this report entitled "Correcting

Images for Atmospheric Turbulence."

TECHNOLOGY TRANSFER

We are pleased to report that the work sponsored as ARIDPCM has had
immediate transfer to a major government activity. The ARIDPCM method has
been utilized in a prototype system built by a contractor for a special
study. The success of this prototype has led to the designation of ARIDPCM
as a standard format for a special system. This special system, the
contractor, the sponsorship, and all details of the study are classified,
and Special Access Requirements apply to the detailed information.
However, AFOSR sponsorship of Grant Number AFOSR-81-0170 are essential to

the successful transfer of this research into a problem of national

significance and need.
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svstem, without serious loss of resoiluction. In the spacial
domain, a large aumber of pixels possesses low inter-pixel

varian

(9]
L1

or equivalenctly, they are said to be highlvw
correlated. As a resulrt, the adjacent-sample difference has
a auch smaller variance than the original signal. This facz:

is exploited in redundancy-removal for image data.

1.1 Concepnts of Data Compression

We recall the definition of an image element or
pixel, a digital 1image gray level P(i,j) which has been
discretized both in spatial coordinates and in intensicty.
Thus the image mav be considered as a matrix whose row and
column index is a point in the image and the correspondiag
satrix element value identifies the gray level at ctha:
point, i.e., the pixel value,

Two related concepts necessary to cthe understanding
of this thesis are the bit-rate and the compression ratio.
A basic problem in image data compression is to achieve the
minimum possible distortion for a given compression racte, or

equivalently, to achieve a given acceptable lavel of

distortion with the least possible compression race. The
compression is characterized by bHit race, and iz i3
specified as the aumber of bHits per pixel., 3PP. Then :he

compression ratio is defined as
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2 = Average bit rate of the original! image data
Average bit rate of e

sudjective image Ifidelity measure
The distortion <can be specified either bHv an
objective measure as the root-mean-square error, RMSE, or v

a8 subjective measure such as the mean opinion score, which
is given by human observers [11!, The RMSE is used as an
objective measure of the performance of data compression

methods in this thesis, and it is defined as

(5]

>
~

/ N N (P.. -
- - - A i=

RMSE = 7 = Lo
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(1 ¥]
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where P'j is the original ixel, Pii 1s the reconstructed

-

pixel, and N is an original square image size.

1.2 IDPCM and Its Variants

As mentioned above, many successful methods of daca

compression have been developed both in the transform and

*he spatia. domaians in recent vears [2° Among dZata
compression <techniques in the spatia. domain., extens:ive

efforzs have hHeen conc

[11]

ncrated on cthe Differential Pylse
Code Modulazion [DPCM) syscem 2 The DPCM meznod
particu.ar.r at:iractive because of its simple design and i:s

rapid speed oI  operation. which ntas made 1ts use in

real-time data compression of television signais 20ssible.

AR WL T AT T Py Nl
""\’N"l"" .ﬁ-\,_ ’ A . A

-

w!

-

1




LAt Sab Ao yv‘rw,—wvv\wpqy-"]

But its major drawbacks have Deen also pointed out in [<':
. 1) it is sensitive o variances Ln lmage statistics, !

is hignly sensit:ive o channel error, and {(3) 1i: becomes
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- be introcduzed ia the following section, Siace ctnen, :ine

IJ2PCM mecnod has been furcther improved. One 1s a mci:ii
‘ IDPCM algorichm calied Recursive-IDPCM (63, and anczner .3
the Adaptive Recursive-IDPCM, which will De expiaines 1n =-ne

o following seczions.
4 1igh data compression ratio and a low RMSI Rhave
- Deen obtarned DHv the Recursive-IDPCM mecthod. However in

.. rea. wor.d 1mages the statistical properties of imaze Zaza

Y

vary Irom one to another, and even within a single :mage
some Tregions mav not be redundant (and <therefore not
compressibie;, and other regions may be very redundant:. P

é: is desirable to perform data compression by perfecclv
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matching the activitvy of the data source. This naturally
leads to the development of an adaptive Recursive-IDPCM
method. To apply an adaptive scheme, several problems have
to be solved. A suitadle measure of image activity mus:t be
obtained, adaptive quantization must be achieved, and <zhe
image Mus: be optimally parcitioned. The approaches to solv=-
1ng the above problems are examined in tnis thes.s, and once

tney are sc.ved, the z2ca. of the Adaptive Recursive-IDPCM

cata tcmpression me:tnocd LS 0 achieve a ."‘.‘.gh compression

Tall2 wlith a gocd sudb ective reconstructed 1mage fidelicty
wi1Znout Jdrastifa..y 1ncreasing computation tTime over that
Tejulre: I:tr Peczursive [IPTM
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o CHAPTER 2

-_ INTERPOLATED DPCM AND RECURSIVE

) INTERPOLATED-DPCM

'

-

» Before discussing the Adaptive Recursive-IDPCM
- method, it 1is necessary to 1introduce the IDPCM and the
. Recursive IDPCM methods.

Z 2.1 IDPCM

- The IDPCM data compression method was developed by
Hunt, as an optical analogy to DPCM. The IDPCM has some
similarity to DPCM, but rather than being based on
prediction of future pixel values, it uses 1interpolation.
The basic idea of IDPCM is to interpolate a subsampled image
in order to generate a low-frequency version image of the
original, and to quantize the difference between low- and
high-frequency information in a smaller number of bits than

the bits required for quantizing the entire pixel value.

q For example, if we subsample an image by skipping 8 pixels
in vertical and horizontal directions, the low-frequency

’ version image in Figure 3 only requires 1.67%Z of the bi<s in
its original image. For the difference image in Figure 4,

"

I

s its histogram depicted in Figure 5 shows that most cf the

- 1ifference values are distributed in a very narrow region
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These

ori1gin.  These diilferer val:.es can thus De
:ﬁ suantized in a2 smaller aumber 2f DSics ©o achieve Zata
. compression,
n
- In the IDPCM me-hnod (3], <che low-Irequency version
: of the origirnal image is obtained byv <the convolution
B = 77 P(r,s)nh{(i-r),(i-s)] 33
el - ‘
) where h 1is the point-spread-function of the 1interpolactcr.
:%_ The 1image P is constructed from the subsampled image bHv
- inserting zeroes in place of the missing samples to make the
iy image N x N. The difference image between low- and
. nigh-freguency d{i,j) = 2(i,3;, - 5‘:,j is then gquan:zizec
ﬂi The properties of ® depend on the interpclation function, 1
;f The interpolative representation based on
k minimization of the ensemble mean square interpo.ation error
_'” was derived by Jain [1l4]. However, <his minimizat:ion s
; only for stationary data. For a two-d:mens:ional signa. ¢ _
s -
~ i, = 0,l...N+1 such that
EE 2.0, =2 0
- 1l
. z07, ® = .0 LT -
. fTlen,em 1) = -
- The mean square error . 0f tRe i1nTerpclatal vaLie ...
. Lo
= minimized i€
i.
‘2
v
i A L S S e e SR DNy
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It is known that a large number oI real weorl

2

image 3Za

[}
1Y)

tty

does not poOssess stationarttv. Jf course some me:thods o

o

X

estimating non-stationarv data could be employed IO optimi
the 1interpolator, but they might not be feasible <Zfor a
real-time compression svstem. Therefore, some kind of
approximation has to be adopted. In the IDPCM method, the
point-spread-function h is approximated by a bilinear

interpolator kernel. For example, a 7 x 7 bilinear kernel

23]

is illustrated in Figure 6.
The IDPCM operation is described a2s follows:

1. The original image 1is subsampled at every iIourcth
line and every fourth pixel, to create a subsampled
image. CEach subsample is quantized in 3 bits with a

uniform quantizer, the maximum and minimum

guantization level being the maximum and minimum of

the original image.

[ge]

Zeros are inserted into the missing data values 1in
the subsampled image <to give an image of the
riginal size. This image is then convolved with a

- -
/

7 X bilinear interpolator kernel which is

r1g

pa-

described

v
o |

gure 6.
. The interpolated image is subtracted from zhe origi-

na., and the differences are quanticzed 1n N, 91%s,.
o
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‘:::' Figure 6. 7 x 7 Bilinear kernel.
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The quantization rule is a zapered guantize
on the Laplacian probability densizv [ 7], which was

found :to be applicable to the method of IDPCM,

[

The subsamples and the quantized diflerences are

then used to reconstruct the image.

The major attractive features of the IDPCM method
are:

1. It is well suited for hardware implementation.

2. It achieves a high data compression ratio.

3. It is less sensitive to channel error than the DPCM
system. In the DPCM method, because the prediction
is based on the previous values, a channel error
will affect not only the current prediction accuracy
but also all future prediction accuracy. However,
in the IDPCM system, channel error can only affec:
the accuracy of pixels within an interpolation
kernel and usually only one pixel's accuracy because
a large amount of the transmicted data is
differences.

4, Since the IDPCM is a non-causal operation, 1° mav be

operated in parallel.

Since the introduction of <this method, several
developments to the IDPCM data compression mezhod rave been

achieved, as discussed below.

AT R B N I S S

I L e SEL LS




- 24
N
2.2 Recursive IDPCM

i: A significant improvement of IDPCM, caliled Recursive

I0PCM, was achieved bdv Hunt and Cae 5. JOne-dimensiona.
. Recursive-IDPCM is drawn in Figure 7 and discussed as

‘ Iollows.

? In Figure 7 =the pixel values P(n-2) and P(n+2) are
- subsamples. They are quantized in 6 bits and are used to

interpolate the middle point ¢. Then the difference between
% the interpolated value ¢ and the original value C, cC, 1is
quantized to calculate c'c. The reconstructed middle point

vaiue which is the sum of the quantized difference ¢

(R}

ae

nterpolated value T zogether with scubsampies Pln-2' and

e

=~
&
'y

(n+2) is used to interpolate the pixel values at points n-.
- and a+l, which are b and d. The differences b'b and d'd are

also quantized. The difference cc' is defined as the first

' set of difference, and the b'b and d'd are the second set of
.t

differences. It 1is obvious that the second set of
< differences is calculated by the reconstructed value c¢' and

subsamples A and E; therefore, they will be smaller than the

irst set o0of difference. This implies that the required

.
L4 )

. aumber of quantization bits will be reduced.

In the two-dimensional <case the low-frequency

-~ version of the original image, rather than being obtained by
one <ime convolution, is accomplished by performing the

.

E{ tnterpolation recursively. The recursive process 1is:

Y

RPN R N
A S LN NN
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Figure 7. One-dimensional Recursive-IDPCM.
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- (1) subsample the original image (e.g., subsample the image
3 skipping 3 pixels both in vertical and horizon<ca
4 directions) and quantize the subimage at 6 bits :ne
A

: !_ original 1image pixel values are gquantized in 8 bits, but
Q - usually human eves can only distinguish 32-64 grayv levels, 6

bits are sufficient); (2) insert zeros into the subsanmpled

h 23, image to double its size and then convolve the opbtained
- image with a 3 x 3 bilinear kernel; (3) subtract the
N ‘ \ . . — .

o é interpolated values from their corresponding original pixel

! values and quantize this first set of differences (the above

f éi process 1is shown in Figure 8); and (4) the sum of the

.; . guantized differences and the interpolated values <together

( i with the previous 64 by 64 subsamples form a finer subsample

)

; . image, 128 by 128. The above process is repeated until

' .

A reaching the original image size, 512 by 512. During this

process, the size of a subsample image increases from 64 x

' 64, to 128 x 128, to 256 x 236. By the recursive scheme,
SN the subsamples come closer and closer, and the differences
: C. between high- and low-frequencv versions will become
AR successively smaller, Finaily only the £first subsanmple
AT image and all sets of quantized differences need to be trans-
.Y . - . : -
! micced. *or low variant data, the second set of differences
i - . . . . s . . -
v could be assigned no quantization bits. This omission of
« . . ; £
the last set and possibly the next to the last set of
e
D . . :
4 Ez difference values can save a substantial number of bi-s,.
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B© In principle, the above process can be repeated many
. o . . . .
- times depending on the subsample's density, and everv
b recursion will reduce the 1interpolated interval DOy hal?f.
by Therefore, the recursive process has a property that everv
_"'
- - recursion can reduce the bit rate. The it assignment of
oy - . . . .
‘Y zhe Recursive-IDPCM between subsamples are shown in Figure
saliiias 9. The overall bit requirement for a reconstructed image is
) -
PN
>
T 2 2 2
TR Total bits = 6 x (N/m)® + 3N, (N/m)® + T12(N ,)(N/m)")]
T D1 D2
= (6)
NS where
~",
A N = original image size
o
!
{ is M = number of pixels by which subsamples are separ-
- ated
b
- NDl = number of bits for quantizing the first set
.< -
l differences
K -~ -
S NDq = number of bits for quantizing the second set
- “
:: e differences
-
s Gj RIDPCM is a very efficient data compression method
AN
- wihich has achieved a bit rate below ©£.4 and mean-square
D error below 0.2%. Also it 1is a very simple algorizam to be
ol
=~ . implemented for a real-ctime data compression syvstem.
-,
YL However, this method is used to ccompress an ent:ire
‘* W 1mage without regard o the amount oI <detail in anv
M
- - 1 5 Fyyre < - { -
e particular area of an image. A further improvemen:t is o
"
v
N
~J ‘.f
r, ¢
\J
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®
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! Figure 9. Bit assignment for one interpoliation kernel. --
(a) Bit assignment <{or subsamples skippiag 8

pixels; and (b) Bit assiganment for subsamples
g skipping 9 pixels.
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. CHAPTER 3
' ADAPTIVE RECURSIVE-IDPCM METHOD
n S
Y
. -
- ~ . . .
o= In most present image data transmission systems, the
sampling rate is set on the basis of the fastest expected
-
N response from the data source and not on the basis of the
L. quiescent or normal value. The main advantage of an
; & adaptive data compression system is its ability to iancrease _
e the compression efficiency to a maximum for the specified
s ‘:J
/ B data with tolerable loss of information. The approach of
ﬁ' the adaptive Recursive-IDPCM method is to divide an image
; into subimages where a high bit rate is required to quantize
: :::. relatively complex subimages but a low bit rate is
: ‘ sufficient for relatively simple subimages. To match the -
s sampling rate and +the quantization level to the subimage
n
a3 - . . . .
o data activity or complexity would require an activity
e
OO classifier. The statistics of each class of subimages 1is
L calculated for designing proper quantizers. The subimage
L
N classification, the quantizer design, and the subinage size
of
e
S o are discussed in the following sections.
Lo 3.1 Subimage Classification
: Subimages are <classified by level of activity.
. ‘_ According to human visual acuity, three levels of activity
- 21
. -,
- S
'S
P




A X

BN v

are suggestedc 37 high detail, low derail, and average
detail. The hnigh dezail subimages ars Zdefined as neighbor-

hoods of sharg grav-leve. transitions and low-detail
subimages as neighborhoocds of smooth grav-level transitions.
The subimage activity is measured Dby statistical image
information, and three approaches are proposed. Here, we
define high detail as c¢lass 1, average detail as class 2,
and low detail as class 3.
Subimage Classification by
Calculating Sample Variance

Generally, simple descriptions of the waveform are
provided by the guanticzies [&]

,
= / < = -
My 1/N X(n), Oy 1/(N=1)

[ [ S e
-1

U
(7)

3
[
=]

called, respectivelv, the sample mean and sample variance.
The quantity S the square root of the sample variance, 1is
called the standard deviation, For two-dimensional image

data, the sample mean and sample variance are defined as

) n 1
y. . = (1/n° )i ) ) .

i Lo i+k, j+1

J k=1 L=1 rJ

n

2 2 7 n 2
~ - - - 3 D _ -
iy o= V=D L (P e i) (8)

K=1 L=} ' J -
-1
:__/5“_- r.-‘:.{“‘.- N ,;: h&h. _,.::'.;_."-:r;.;:.ﬂ‘-;_;;_\:;;.'\: ':‘».‘ _'..:.
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wnere n 1s the size of square subimages and P Is a pixel
" value. The classificaczion of subimage aczivizyv Is periormed
o

by comparing .. with 2 previcusly defined thresholds (2.3.,

) ! 13 i :
g Tl = 30, T2 = 15.0, T3 = 0.0}
e rhigh detail Tl < -,
W - <9
o | b
Subimage Activicty < average detail T2 ¢, . ¢ T
=3

™ L
" low detail T3 Lz, < T2
Nl Figures 10, 11 and 12 show the results of the classification
N

of subimage activity. By this method, the quanticacive
- measure basically agree with the subjective measure Moszt
‘ detailed regions such as the zirl's 2ves, the featner, and
', sharp edges were classified into class one, and mos: fla:z
- regions, 1like the background, the girl's shoulder, etc.,
T were classified into class three. But cthis classification

method has the following problems.
wrong classification on sharp edges

e regions.

In some cases

is a

there

bertween dark and bright

N For example, if we assume that the subimages have
- the type of patterns in Figure 14, the variances of these
‘f subimages are relatively small. In other words, these
) subimages will be <classified into <¢lass 2 or <class 3.
- Usually this tvpe of subimages are on sharp edges between
ﬁ: dark and bright regions Figure 15 is the reconstruccted
4 image oI <che Adap:zive Recursive-IDPCM, and the subimage
g . ciassification s Dbased on Zquation 8. When this image is
-

'q
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Tigure 2. Sudimaze classification 5v sudbimage varizocza,
low dezail.
Tigure 13, Original imag
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enlarged, Figure 16, we can see that the sharp edge bDetween
s the girl's shoulder and the <dark background was Dbacly
reconstructed, This is because the subimages covering this

- edge were not correctly classified. As a resulzs,

M

insufficient bit rate was assigned to those subimages.
- Since the distortion along sharp edges is particularly
- sensitive to human eyes, the above classification 1is not
satisfactory. The second problem is that the calculation of
z ., cannot be done concurrently during the recursive
- +J

process. This will cost much more machine time than the
Recursive IDPCM; therefore, this approach 1is not desirable

.~

2al-time implementation. The third problem is thac

th

(3]
g
(4

or

o ]

+
=3
[s9

information of each subimage activity has to De transmitce

to the receiver. This will cost some bits.
Subimage Classification Based
. on the Variance of Differences
The subimage activity can be associated with <the
- statistical property of the differences between interpolated

and original wvalues. This is possible because the

Loy

interpolation error will bDe small wnen neighboring pixels

: 1
1

have low variance or wil. De large when neighboring pixels

nave large variance. Now deiine the sample mean and sample

-y variance of difference daza as
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Tigure 153, Adaptive-Recursive-IDPCM, BPD = 5,30.04: MSI =
0.0.374 (sudimage classif:icazion accordiaz s
the varlance of subimagze pixel values).
-
, Tigur2 5. ZInlargement s Tigure 13,
7
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'.1..=l/n ‘;‘;(d 1

. 1] g i+k, j+1

“_ 2 - / - 2\"7 2
N iy 7 e &1 (kdyik, g1 ~ ¥1j) (9)
L where
o (k,L (0,2,4...n=-1)
- K #L =0
- i,j = (1, n+l, 2n+l...,N+1)
*

. n subimage size
N, -
~
o

b

In Figure 3, the histogram of difference data has a Laplace

.
“

X distribution and is around the origin; therefore, the sample

mean is approximately equal to zero

‘u; .= O
]
and
IR VIS DEENC )2 (10)
@y = t/(n- i+k, j+1
The % is used to represent the activity of subimages,
igh detail Tl < aij
The activity of subimages average detail T2 ¢ aij < Tl
) 5
low detail uij < T2

This approach has a satisfactory performance of subimage
classification. In Figure 17, class one subimages, we can
see that most sharp edges, the detailed regions such as the
girl's eves and the feather, are classified. In Figure .8,

class three, most of the flat regions are also classified,

Lo .,
e e e e
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D
and 1in Figure 1% is class 2, in between classes 1 and . 2
Zguaction e, ~ne patterns in Tigure s Wl not e
classified into the class oI low cetai. Ddecause the errcr ol
interpolation 1s large.
Another important advantage of <this approach shcull
be pointed ouct. Since the difference dZata contain the

information of <the subimage activity and <they are to be
transmitted, it is not necessary to transmit the extra bits
b -

-

for indexing each subimage activity. Thus, a slighs
reduction could be obtained.

Multiplication and square root operations require

\n

nine time zhan addition and logic operation

(8]

much longer ma

ct

Unfortunately <he adove algorithm has brought a Large amount

of multiplication operations, which is opposite to the goal
0of a real-time data compression system. A desirable feature
of a data compression method 1is to have not only a high
compression ratic but also a fast operation. This demand
leads to our third approach to the subimage classificacion.

Subimage Classif:

icatio
ibsolure Values of Differences

As mentioned above, addition and logic operations

(@]

Pl

are preferred for subimage classification. Gimlet: [1

suggested that "the weighted sum of the absolute values of

N\

~he transform coefficients, defined herein as the activi

-
-

index, is proposed as an objective measure of scene business
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f an input falls

—

bins equally as illustrated in Figure 23.
rnto the k:h bin, rthe output 1s the value Qk corresponcing
o the centcer of <the Kt'n bin so <that each inrput is rounded
0ff to the center of the bin into which it falls. 4 unifor:
quantizer nas all its bin widths equal. Nonuniform
quantizers allow different bins to have different widths.

In the Adaptive Recursive-IDPCM data compression
system, the quantization strategy is tc choose the quantizer
levels Qi so that theyv minimize the mean-square-error. This

error is given byv

b
i~
e

¥ - Q.)%P(x)dx ‘
i

wher cew > an < so. < r

here x, < X5 < < Xool d Ql < Q2 Q3 Qn are
decision boundaries and the quantcizer output levels,
respectively, and P(x) is a probability density function of
differences. Considering Figure 24, the histogram of the
differences, let F(x) represents the number of differences

which have values equal to x_., then the density function

fur}

?(x,) is equal to

F(X; < X < X; < AxX)
P(x,) = lim = 'X (239
s -
2X-0
If we choose AX = 1 (because values of subsamples are

integers), f/x) is appreocximately equal =wo the probabd:

—

3
-

density function P{x).
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Taking a partial derivative

to Q. gives

5
-

ar
(0]

w
L
|

!

I P(X)dx

In order to solve two unknown

take a pertial derivative

X, . = ' i-

From simultaneous Ecuations 17 and 16

' X (X5 dx
« X,
~ - 1
o =
1 .Xi
‘ Y P(X)dx
.
b

[ 7
< ! (X = Q, ;) P(x)dx +

of Equation 14 with

(X = Q)P(x)éx = 0 (16

variables Q, and X_,

-

of EZquation 14 with

P XL,
1+l -
I (X -2, )"?20(xDH= 0,

X, o

1

~
-
0
~

[
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optimum quantizer output levels are determined. Figure 253
i- hows a half range of 3 bits quantizer input and output.

'_ 3.3 Adaptive Recursive-IDPCM Process

The equaticns of the Adaptive-Recursive-IDPCM are

v -_— - /a
(Pij L (pij + n/2, i + n/2
6{ P +
. i - n/2, j - n/2
P. . + P, .
< i - n/2, j + n/2 i+ n/2, j - n/Z)
i interpoiation -
- when on interlaced field (22)
!
 (
T = 1/2(7. s + D
- L i3 "‘(‘1, j+n/2 7 i, 0§ - n/2’
when on scan lines
quantization d. . . - P, 233
. juant i iy = Z(PlJ lJ) (23)
P reconstruction P, . = P, 4+ d.. A
- 2 1] 1]

where n 1s the number of pixels oy which subsamples are

S separated. In Adaprive Recursive-IDPCM, =-xe sudimaze s:i:ze
., is selected equal te the number of pixe.s 3 Wl e
>
- original image is sampled. Figure 26 snows a -ase - .-

|
., - : . ° . . I
N there is a 8:1 subsampling of{ image 2ixe.s a.:7: -. : ‘
(S ' '
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line, and 8:%1 subsampling of image lines. The {irst set o

tn

interpolation is shown by arrows.
ith the a.Luve equations, =:thZ= 1interpolation, <the
subimage classification, and the quantization, the adaptive
data compression can be conducted in two schemes.

1. The bit rate assignment of each subimage is based on

the measure of subimage activity

/fﬁ bits => first set of differences TL ¢ CiJ
3
bit rate L3 bits => second set of differences
assigned f3 bits => first set cf differences T2<C, <TL
{ 1]
to each LZ bits => second set of differences
subimagze r2 bits => first set of differences Cij < TZ
/
3
L “0 bits => second set of differences
(25)

where Tl < Ci‘ indicates high detail, T2 ¢ Cij
J
detail; C, ., < T2, low detail, C.,. is equal to 5._. (8), or
1] 1] 1)
~.. (10), or 8., (12), and «o.,. and 8., are calculated from
13 1] 1] 1]
the first set of differences. However the reconstructed
image does not show very satisfactorv quality. The problenm
is that those subimages classified into class ! or class 2
were finely reconstructed (e.g., the feather, <the girl's
eves, etc.); however, the subimages in the class 3 were

poorly reconstructed (e.g., the hat, girl's shoulder, etc.).

On the other hand, 1if we look at the histograms of the

L Ce
.o 3
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- second set of differences in Figures 28 and 29, we find tha:

b)

- . ;

N a large number of difference data has zero or nearly zero

N b

) values. This implies that the data <compression for

' t -

N s subimages in classes 1 and 2 is still inefficiernt. of

g,

" s

. v course, we could adjust thresholds to classify mere
S

[
LA

subimages into class 2 and fewer subimages 1nto class 1, but

the improvement would not be very notable. We noticed that

'_:‘“'

.l

in the Recursive-IDPCM method, the differences are

a8
¥
'l

calculated and quantized at each recursion. If we c¢an

decide the quantization level at each recursion, the data

's
o

compression will be efficient. This leads to the second

Paak Tl b v ¥

scheme of adaptation.

)
{ i 2. The differences are quantized adaptively at each
’
e recursion and bit assignment is based on Equations 10
S
YN . . . . . .
' and 12. The quantization bit assignment is shown in the
| ‘ following relations.
F 7
- bit rate for the 4 bits T1 < C,
\ “a -
% h ‘ first set of 3 bits (first recursion) T2 Ci' < Tl
Lo difference. 0 bits Cij < T2
'E quantization (26
-
~ Bit rate for the 3 bits TL ¢ C, |
L3
‘B second set of 2 bits (second recursion) T2 ¢ Ci‘ <« Ti
difference 0 bits Cw.j < T2
D) :}'» P
& quantization (27)
o
Y
* I
)
Ny
¢
b . . “yer .y .t Bt T R T T TS T it N S i R R o)
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3.4 Performance of the Adaptive
ive-1DP
- Recursive-IDPCM

The Adaptive Recursive-IDPCM data compression method

has been simulated on the PDP 11/70-IIS image processing

svstem in the Digital Image Analvsis Laboratory. The result
T o
A shows that a further improvement to the Recursive-IDPCM has
.’- .-"
L. . ‘ . . .
- been achieved. Comparing =the two reconstructed images in
L
N Figures 32 and 323, it can be seen that in the reconstructed

image wnich was compressed by Recursive-IDPCM, the detailed
A B regions such as the girl's shoulder, the edge of the hat

" were jagged and her eyes, evelash, and the feather were

blurred; however, in the reconstructed image of the Adaptive
o Recursive IDPCM, this type of degradation is much less in

evidence even with a lower bit rate than wused 1in the

e Recursive-IDPCM, Bur in some simplie regions of the
-.' '
.t
4 : . . . .
'} . reconstructed image by zhe Adaptive Recursive-IDPCM method,
i S

degradations are still noticeable, such as the <=0p 0of the
‘

N girl's hat. it 1is because of <the not-very obvious

distortion In simple regions that a large number of bits can
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be saved for detailed regions which are very sensitive to
fuman eves.

The dilIferent partition of the original image was

tested by dividing an image into different sizes of

&
o
o

)
o}

—
b=

subimages. owing table shows <he relation between
the size of subimages and the number of subimages in each
class (Table 1).

The smaller the subimage size is, the larger the
number of simple subimages will be because the correlation
between the nearest pixels is higher. As a result, the
difference values will become smaller and :the bit rate for
quantizing differences can be reduced. On the other hand,
the overall bit rate was increased because the image had to
be sampled more densely. However, a very good reconstructed
image was obtained with <the bit rate 0.546 (Figure 34).
When the size of the subimages is too large (e.z., 16 x 16),
the subiect quality of the reconstructed image shown 1in
Figure 35 1is not very satisfactory, although a slight bit
reduction has been obtained. This is because there is not
much correlation among too coarsely subsampled pixels. For
the image used in this simulation, a 8 x 8 subimage is a
suitable size. Generaily, the selection of optimum subimage

size for adaprive data compression schemes depends on the

statistics of the image da:a.
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Subimage

Three Classes of Subimage
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% Size lLow Detail Average Detail High Detail
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One problem which should be pointed out s =i

()

although the subjective quality of the reconscrucctec iImage

has been improved by using the adaptive scheme, :tne objec-

vive quality represented by RMSE (2) has not been ach:eved.
=

For example, in Figure 32, Recursive-IDPCM, <the 3PP :is

3577 and the RMSE is 0.00818; 1in Figure 36, Adap::ive

(@]
w

Recursive IDPCM, the BPP is (0.3361 and the RMSE is 0.00907.

rry

or the same bit rate, the Adaptive Recursive-IDPCM has a
slightly larger RMSE than the Recursive-IDPCM. But it has
been pointed out [1l1] that quantitative measures of image

fidelity which have been developed are not periect.

h
(o]

heref

re, our =valuation on the Adaptive Recursive-IDPCM

-

method is based on its subjective measure.
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SO COMPRESSION OF COMPUTER TOMOGRAPHIC PROJECTION

;x BY THE ADAPTIVE RECURSIVE-IDPCM

NP

R

Ay It has been pointed out [12] rthat the projection

.;% §3- matrix of computer tomographics contains a great deal of
. -~

N\ - redundant information. Therefore, the projection matrix is

Y

::!. ;.:3 compressible,. The compression of tomographic projections
> using the DPCM method has been studied [12]. In this
PO ‘

A thesis, a new approach of compressing tomographic projec-
v -

,ii .- tions using the Adaptive Recursive-IDPCM is introduced.

N
>

A projection taken along a set of parallel ravs 1is

N

jjﬁ ﬂf called a parallel projection, two examples of which are

_é? ;:“ shown in Figure 38, and a projection along parallel rays in

;? L: a certain angle is calculated by the function

v -

i Po(x) = | E(xiy)dy

'_: e et |
tf: (25 where f(x,y) represents a two-dimensional image pixel value. %
;§ T A projection matrix is also depicted in Figure 39

:ﬁg fii and will be compressed. It has also been pointed out [12]

that the amount of redundancy appears to be strongly

~
‘;s o~ dependent upon the angle of projection, the redundancy 1is
- -
- -
4] . .
R highest near the angles of 0°, 90° and 180°. Because of
o
L] >
o
! 4_
v AN
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.
u -his characteristics, an adaptive data compression scheme
- seems <0 be more suirtable.
: A 102 x 184 projection matrix in Figure &I was
_.‘ obtained from a 12% bHy 128 image shown in Figure <C, and it
was a .02 x 184 matrix in Figure 42, To simplify program-
. ming, the scalloped ends of the projection matrix were
- trimmed before encoding, producing a reccangular matrix.
M
s The obtained rectangular matrix was <compressed by the
v Adaptive Recursive-IDPCM method discussed in Section 3.3.
Y
- The methods of calculating a projection and a back
s projection can be found from references [12 and 13]. The
reconstructed image qualicv in Figure 42 is improved, which
can be seen by comparing the image in Tigure 42, with the

image in figure 10c¢ from the reference [12]. However, <the
reconstructed image even without data compression is
distorted, as shown in TFigure 41. As a result, the
reconstructed 1image with data compression does not have

satisfactorv quality although some <improvement has been

achieved bv using the Adaptive Recursive-IDPCM method.
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CHAPTER 5

CONCLUSION

In this thesis, we have discussed the fundamentals

£

of data compression as well as details of the Adaptive
Recursive-IDPCM data compression method. In order to
implement adaptive schemes, several subimage activity
classification algorithms were tested, and the

classification wusing the absoclute value of difference was
considered to be the best. The optimum quantizer was
designed <to minimize the quantization error based co¢n the
mean-square-error ¢ricerion. Especially when the
differences were quantized adaptively at each recursion, the
Adaptive data compression method performed more efficiently,
Compared with the Recursive-IDPCM, we have seen that the
subiective gquality of <the reconstructed image using the
adaptive scheme has been notably improved. As is the case
for the IDPCM system, the Adaptive Recursive-IDPCM system is
alsc less sensitive to channel error <than the DPCM systen.
Although the encoding and decoding complexity are slightly
increased, the Adaptive Recursive-IDPCM can still be easily

implemented for a real-time svstem.
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.. It is mentioned in the introduction that image data
;{w compression methods are basically categorized into two
N classes. One class is data compression in <the :traasfornm
! domain, and another class is data compression in the spatial
domain. In the <transform domain, many transform tcding
.; a.gorithms achieve high performance, smail sensitivity to
- fluctuation in data statistics, but their hardware

complexity is high. In the spatial domain, the predictive
" methods are generally easy to implement, but thev are
sensitive to data statistics. The Adaptive Recursive-IDPCM

System seems <to nave both the advantages of predictive

coding mezhods and of transform coding methods. Real-time
{i implementation of the Adaptive Recursive-IDPCM method is the
. suggested step for future research so that this method can
o actually be tested.
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ABSTRACT

The turbulent atmosphere degrades images of objects viewed
through it bv introducing random amplitude and phase errors into the
optical wavefront. Various methods have been devised to obtain true
images of such objects, including the shift-and-add method, which is
examined in detail in this work.

It 1s shown theoretically that shift-and-add processing may
preserve diffraction~limited information in the resulting image, both
in the point source and extended object cases, and the probability of
ghost peaks in the case of an object consisting of two point sources is
discussec. Alsoc, a convergence rate for the shift-and-add algorithm is
established and simulation results are presented. The combination of
shift~and-add processing and Yiener filtering 1s shown to provide

excellient 1mage restorations.
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o CHAPTER 1

A INTRODUCT1ON ;

.o Imaging through random media is a problem with applications 1n

i a variety of disciplines. It arises in medical ultrasound imaging

- . . . . , .

5 where the random medium is biological tissue. It also occurs in wave

" {
propagation through the ocean where there are inhomogeneities due to

.:‘

- temperature variations and the presence of biological material. In tne

v atmosphere, turbulence arising from temperature variations creates

l.“

e random effects in images obtained through ground-based astronony.

o In each case, the resulting images have a characteristic 1qr
or "speckled" appearance. This presents special difficulties 1n image

o restoration because the degradations are random in nature, and 1{ we
think in the context of linear systems theory, we are limited to

One methoc

. information about the average point spread function oniy.

A developed to counter this problem, specifically for the case of

ground-based astronomy, is the shift-and-add method (Bates and Cady, ;

" 1980; Cady and Bates, 1980), which will be examined in detail in this

dissertation.

. Since the degradations produced by the atmosphere are random 1in

nature, Chapter 2 is devoted to characterizing statistically the

* r

) intensity of an ontical wave which has passed through the atmosphere.

Although the literature is by no means unanimous in its choice of an

.t
.

.
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appropriate probability distribution for intensity, the lognorma:
distribution is heavilv favored, both by theorists and experimen:ia.-
1sts. and we will present a physical mode!l and experimental ev:ience 7o
sSupport 1ts use,

In Chapter 3, we discuss tyvpical modes of astronomical

e Raia ool =Rl G

1meging-~sheor: exposures, long exposures, and speckie interf
- , .
kS and also review some of the major advances 1in obtaining nore
~

information from such images. Among the algorithms 1o be consizcerel
. are speckle holograpny, Fienup's iterazive algor:ithms, Knox-Thompson,
and shift-and-add.

Since shifr-and-add 1s such a simple and easilv implemented

alqeriznm, the question of whv 1t works rnatura.lv cccurs. This
question 1s analvzed in detail in Chapter &4, which constitutes

major original contribution of this dissertat:on. he

comdined point spread function for atmospheric degracation ar:

Ter o or It

-t

snifz-and-add processing, address the probabilityv of e
"gnost" peaxs, examine the case of extended orject imag:ing. ant

Our resu.ts .r

determine the rate of convergence of the algor:itnm. COur
this chapter indicate that the shift-and-add method applied o 3 ser.es
of short exposure images mav allow d:

be preserved.

In order to test the performance of shift-and-add process:ng

; and thus verify our analvtical results, we have simulated atmospner::

“ve-. gz
PSR

turbulence degradations, since no real data were avai.ab.e. e

the two algorithms used for this purpose in Chapier 2.

—
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evelrper ow Mcllamerv T1GTo', 1s an alger:thm which considers phase
;j IeoTa3Tions only. we subsequent.lyv mod:ifiled this scheme to include
. 3mT LIt Ll 2flelts as well
- Ir Tmzoter o, we discuss generation of degraded images by
co-wtlvimz e simulated uncegraced imane with the point spread functions
srmrutel in Cnaprer 3. We then apply shift-and-add processing alone
- i
B 377 2 Zombination of shift-and-add processing and Wiener filtering to
*"ewe imapes, obtaining evcellent restoration results. As a caution

st max.n excessive claims for the performance of this processing,

- ~7te tnat the simulated 1mages are norse-free; however, the combined

results of Chapter & and the simulation results of

ctermToTIZal
; 21t - zemonstrate that the shift-and-add nethod is an effective and
(]
} ertre-c v oeasily imp.emented anproach to restoring images corrupted by
. 1t=-scrneric turhulence and nernaps, other random degradations.
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B CHAPTER 2
g! OPTICAL PROPAGATION THROUGH THE ATMOSPHERE
7
N we are all familiar with the twinkling of stars as we observe
« them through the earth's atmosphere. This phenomenon is due to random
- phase and amplitude shifts in the optical path between the star and the
&5 viewer's eve. These shifts are induced by atmospheric turbulence, a
’ condition primarily cgysed by temperature inhomogeneities arising from
. the action of winds and from heat rising from the earth. Since
- refractive index n is dependent upon temperature, these temperature
L inhomogeneities give rise to regions with randomly varying refractive
. index, which in turn result in the amplitude and phase shifts mentioned

above.
n In ground-based astronomy, the viewer's eye is replaced by a
- teiescope, and because of the finite time required to record an image,
EE the random phase shifts produce a "speckle pattern’ as the image of an

unresolved star or point source. (The term "speckle" is borrowed from
~ laser speckle because of similarities in appearance and in some
i: statistical models of the two phenomena, and it refers to a granular
I
. structure in the image.)

Since the amplitude and phase shifts induced by the atmosphere

. are random, we wish to characterize them by their statistical
:& properties. In particular, we want to determine the distribution of
; 4
b
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intensity (or irradiance), since that is the quantity which is

typically measured.

2.1 Justification of Lognormal Intensity
Statistics for Speckle

We have chosen the lognormal model for intensity, as it i1s the

one supported by the majority of the literature (Tatarski, 196];

Lawrence and Strohbehn, 1970; Korff, 1973; Fried, 1966; deWolf, 1969G).

However, this model is by no means unanimously agreed upon, and a good
bibliography of the alternatives has been compiled by Fante (1975).
Since the lognormal distribution is relatively unfamiliar, we have
summarized its relevant properties in Appendix A. In this section, we

will present a non-rigorous phyvsical argument for lognormal intensity

statistics and will also discuss some of the pertinent experimental

evidence.

2.1.1 Physical Grounds for Lognormal Intensity Statistics
According to Strohbehn (1968), we will assume a laminar model

of the turbulent atmosphere that consists of a large number N of slabs

oriented perpendicular to the propagation direction and will derive the

statistics of the phase and amplitude of an optical wave at the pupil

of a telescope or optical system. We will depict this model in Figure

2.1, where s is the source, r is the receiver,Ab is the amplitude of
the optical wave at the source (with phase assumed to be zero), A and U
are the amplitude and phase at the receiver, L is the optical

path-length, di is the (random) width of the ith division of the

.
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Figure 2.1.
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optical path, and n, is the refractive index of the ith slab. The

o
)
5} refractive index ny is actually time dependent and may be written
!! n. =n_+ 4n
] i o} i
i where n, is the mean of all the s, the refractive index of the
'
e

atmosphere without turbulence, and Ani is the varving portion of n, due
to turbulence. Also, several assumptions are made. First, it is

assumed that we are dealing with line of sight propagation with r

.
T,

located in the turhulent medium. This is the condition of ground-based

“ astronomy as opposed to that of a satellite looking down through the
b

5 atmosphere., Even stronger, we are considering only a straight line
e path from source to receiver; that is, ignoring contributions from

scatter at the receiver. The second assumption is that the wavelength

TN
—a

is much shorter than di for every i. This implies that we mav use

.
[l

geometric optics. Third, we assume that Ani is very small compared 1o

n,- More specifically, Ani/n0 is on the order of 10-6. The fourth

B\ 3

assumption is that turbulence is homogeneous and isotropic, which

I

3

i allows us to use this essentially one-dimensional model.

-~ We now consider the amplitude A at the receiver. The following
1 derivation is extremelv simplistic, and it is now thought that all

;E distortions of the optical wavefront (including those which cause

E} amplitude or intensity fluctuations) are due to random phase shifts.

Y In the case of intensity or amplitude fluctuations, phase shifts which

occur high in the atmosphere cause the various portions of the

distorted wavefront to travel in slightly different directions, thus

g:
o
T
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resulting in interference. This interference results in the observed

amplitude or intensity fluctuations (Lawrence, 1976). We shall,

however, proceed with this simplistic view of amplitude or intensity.
First, we define Ri' the reflection coefficient for amplitude

th

at the boundary between the (i—l)th and the i slabs for normally

incident light:

_ reflected amplitude
i incident amplitude

which is very small due to the third assumption in our model, so
subsequently we shall ignore all reflected light. Thus if Ai—l is the
amplitude of the wavefront incident upon the boundary, the amplitude of

the transmitted wave is

i i=1 = RiAi—l

= (L -RpA

We shall denote

AW . . ‘-N. N .'F'- '}"-—_ [ e L WP N - . .j
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and recall tha Mi is random due to dependence on Ani and Ani .. So if
-1

we start at the source S with an amplitude of Ao' the light hits the

first siab, and the amplitude transmitted to the second slab is M,Ao

This process continues for each slab so that the amplitude at the

recelver 1s

Taking the natural logarithm,

logA = logMN + . . .+ logM + long

1

where we mayv, without loss of generality, assume AO = 1 and drop the
last term. We then assume that the logMi meet the requirements for
application of the Central Limit Theorem. One such set of requirements

(Papoulis, 1965), although not the most general, is that if we let x; =

logMi
a. The x; are independent,
b. ¢ C; -> ® ag N -> ®,
ig] i

o
c. f(anp.(x.)dx. is finite for some a > 2.
@ 1 1 1

Therefore, for N very large, logA is (approximately) Gaussian, which

implies that A is lognormal. We are, however, primarily interested in

the statistics of intensity I, since that is the quantity tvypically

measured. Intensity is related to amplitude by

I = a°
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logl = ZlogA

so that itogl 1s also {approximatelv) Gaussian, and I
distributed.

We now turn our attention to the statistical distribution of

phase at the receier. Since the phase at s 1s assumed to be O, the

phase V¥ at r is simply the sum of contributions from each slab

N
" .0
o= L U,
iz O
N
= 2T di/)\i
i=1

interval which varies due to in_,

s X , T
where Ai is the wavelength in the i

the fluctuating portion of the refractive index. Wwe let 10 be the

wavelength for propagation in the atmosphere (refractive index n,'oan

th
the absence of the turbulent lavers. Then for the 1 laver

n. = ;\/A .
i i
so
N
bos 2 )
Vo= 27 i£1 di/(niko)

But n. = n + An., so
i o
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Now we let ko be the wave number corresponding to 10 and rnote that

sum of the di is equal to L, so

kLo kg N

(o]
- ———2_de
(o] no-

The constant first term of this expression is alwavs present due to

e g R
e
"
'

propagation through the distance L whether or not one is dealing with

atmospheric turbulence. The fluctuating (image degrading) portion of

I. .
Ra)

»

Y, which we will denote by ¢, is
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We again assume that we may apply the Central Limit Theorem to the

random product dilnr so that for N verv large, 9 is approximately

Gaussian where
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We have now completed our simplistic physical justification for
assuming lognormal intensity statistics as well as our determination
that the fluctuating portion of phase at the receiver is Gaussian, and

we will now consider some of the relevant experimental results.

2.1.2 Experimental Confirmation of Lognormal Intensity Statistics

There has also been considerable effort to determine the

BR s R D TR SR |

correct statistical model for amplitude or intensity by experimental

measurement. Summaries of these efforts are available in Fante (1975),

Strohbehn (1971), and Roddier (1981). Strohbehn (1971) reports that
one of the first careful experiments, a measurement of the variance of

log-intensity, was made in the Soviet Union in 1965 by Gracheva and

Gurvich. Their measurements agree well with those predicted thecreti-

cally using a lognormal model for small (< 1) values of clogI' Ochs

and Lawrence (1969) later measured the variance of log-amplitude and

concluded that their data were in better agreement with a lognormal

model than with a Rayleigh model for amplitude, which would imply that

intensity is better described by lognormal statistics than by negative

3
!
?
)
?
'
I
|

expone 'tial statistics. (This Rayleigh model is due to an assumption
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that the real and imaginary parts of the electric field are bivariate

.“;'.g”" ;

LA

Gaussian with zero covariance. See Goodman (1984) for a derivation of

¥y

Bes
)

i

this result in the context of laser speckle.)

o

Unfortunately, as Hevde (1963) and Barakat (1976} have noted,

the lognormal distribution has the unusual property of not being

g ‘.; “'-5’(:”'”, '

by .
1

- uniquely determined by its moments. (We have presented a proof of this

property in Appendix A.) Therefore as Barakat (1976) notes, it 1s not

valid to predict a lognormal probability density function for intensity

f 7t

or amplitude simply based on the measurement of moments such as

-;‘;rﬂ&

variance. This casts much doubt on the experimental results reported

o
3

(RS Al
Rl T

above and also upon many of the others recorded in the literature.

>
L3

b More recently, careful measurements have been made of the

G
)

s

Y combined telescope~atmosphere modulation transfer function (MTF) for

[
3
s
f

This transfer function has also

- the speckle interferometry process.

been theoretically obtained by Korff (1973) using the lognormal model

(although considerable numerical evaluation of his result is necessarvy)

NOME it

a

and by Dainty (1973) using a Gaussian model for complex amplitude, an

-
v

approach equivalent to assuming a negative exponential intensitv

g

distribution. Chelli et al. (1979) have presented experimentally

obtained MTF's for infra-red stellar speckle interferometrv and have

Aime et al.

found them to be in good agreement with Korff's model.

A e e

(1979) have also experimentally determined the telescope-atmospnere MTT

¥

-
v’

-~
-
-
=

and have found their results to be in better agreement wiin bori:'s

,\ .
dehoge
»{)‘ ~

model than with the Gaussian model. These experimenta. res.. s o -°

to the validity of assuming a lognormai c:is:r.nu:
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Although the lognormal distribdu
more theoretical and experimenta. support, the negat:ve exponential
distribution is still widely used 1in calculations appearing 1n the
literature. This is due in part to the fact that Goodman (1984) has

developed an extensive collection of analytical results using this

distribution in connection with laser speckle. Also, Daintv (1984) has
noted that the negative exponential distribution becomes a better
assumpticn as seeing deteriorates, and Lee, Holmes and Kerr (1976) have

claimed that it is a valid assumption at least in the absence of

turbulence. Some years earlier, Strohbehn (1968) commented that the

Ravleigh distribution for amplitude, and thus the negative exponential
distribution for intensity, is valid for "tropospheric bevond-the-

horizon propagation or in line-of~sight propagation when the turbulent

e

medium 1s a small slab and the receiver is far from the slab.” This,

nowever, does not describe the situation for ground-based astronomy.

@0,

ER

Certainly, the main advantage of using negative exponential statistics

;

rather than lognormal statistics is that it allows one to more easily

achleve analyvtic solutions to many of the problems arising in astroncmi-

f
3
i
&

E
; ,

e . cal 1maging. We shall, however with one exception, use the lognormal
L
s d:stribution for all of our calculations in subsequent chapters.
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CHAPTER 3

REVIEW OF SPECKLE IMAGING

IS

At this poirt, we have stated that the atmosphere degrades

1mages of objects viewed through it by distributing a point source such

%

P as a star into a speckle pattern, and we have determined a statistical

§:

o model for the intensity of an optical wave which has passed thrcugh the
o . . : : . :

o atmosphere. Wwe now wish to discuss the previous work that has been

- done on the problem of obtaining true images of objects viewed through

i

the atmospnere.

This problem has received considerable attention, especially in

et tPy ety .
R

the last fifteen vears since the advent of speckle interferometry. 1In

Ve

he remainder of this chapter, we will review some of the major

t
advances in speckle imaging. 1In section 3.1, we will briefly discuss
shor: exposure images followed by comments on conventional long

exposure and speckle interferometry in sections 3.2 and 3.3. Then

sections 3.4 through 3.8 will be devoted to short reviews of various

) “M\.‘:‘ i ~gn \-.,'“_ \'.

3

techniques used to extract more information from the ocutput of speckle

interferometry or from the short exposure images themselves. There

. M e

are, of course, many other techniques which will not be covered in this

e
. '- ll

chapter, and we refer the reader to Dainty (1984) or to Bates (1982)

for a more thorough review.
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3.1 The Short Exposure Imace

A short exposure or "instantaneous" image refers to an image
for which the fluctuations of the atmosphere mayv be considered to be
frozen; that is, the exposure time is on the order of a few hundredths
of a second. Ve shall consider such images in the context of a linear

systems model (Figure 3.1) and thus write the following equation
i(x,y) = o(x,y) *% t(x,y) (3.1

where i(x,y) is the short exposure image intensity, o(x,v) 1s the

object intensity, t(x,y) = a(x,y) ** p(x,y) is the combined

atmosphere/telescope point spread function, and ** denotes convolution.
This equation mav be equivalently expressed in the Fourier

domain by

I{u,v) = O(u,v)T(u,v) (3.2)

where I(u,v) and O{u,v) are respectivelyv the Fourier transforms of the
image and object intensities and T(u,v) is the combined
atmosphere/telescope transfer function. Since we are dealing with
astronomical imaging, it should be noted here that although Equations
(3.1) and (3.2) are written in the spatial and spatial frequency
domains, it is more appropriate to interpret x and y as angles of arc
and u and v as angular frequency, that is, arc sec .

Thus our problem is, given i(x,y) (or equivalently, I(u,v)), to
determine o(x,y) or the best possible image of o(x,y) given our optical

svstem. In the short exposure case, one may not simply use the point
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spread functlon t(x,v}) or the transfer function T(u.v) to restore the
image because due to the action of the atmosphere, t(x,v) and T(u,v)
are random, and i1nformation is available only for the average

quantities, {t{x,v)> or <T(u,v)>, This would imply that some form of

averaging of the short exposure images is necessary. In section 3.2,

E we will discuss one form of averaging, the long exposure image, and see

v

~

that it also has serious drawbacks in terms of loss of high frequency

information. We will see that a better approach is the shift-and-add

-
»

o

algorithm of section 3.8, which consists of averaging properly

. registered short exposure images and retains information out to the

e .

diffraction limit.

3.2 Lono Exposure Imaging

Conventional long exposure imaging may be regarded as a sum of
a series of short exposures, so the governing equation for this process

in the Fourier domain is as follows

<I(u,v)> = 0Cu,v)<T(u,v)> (3.3)

where <.> denotes an ensemble average, <I(u,v)> is the Fourier
transform of the long exposure image, and <T(u,v)> is the long exposure
transfer function.

Earlier analyses of the long exposure transfer function were

performed by Hufnagel and Stanley (1964) and Fried (1966), and Fried

has shown that long exposure images retain substantially less high
frequency information than do the individual short exposures, thus

yvielding a blurred or smoothed result. Intuitively, we may see this bv )
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N recalling that T(u,v) 1s random due to atmospheric effects and may thus
=2 -
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S be positive or negative (or perhaps complex-valued) at high
ii'\ frequencies. Summing the individual T(u.v)'s, as in Egquation (3.3},
o~ L A , i . .
= will then result in suppression of high frequencies, so that even if
Rk {T(u,v)> is known, one cannot adequately reconstruct o(x,y) due to this
o

- lack of high frequency information in the image data.
%hff For further discussion of the long exposure transfer function
t'f; and determination of its functional form, see Fried (1966), or Hufnagel
N
g:'} and Stanley (1964) or the review articles Dainty (1984) or Roddier

PR

(1981).
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iz 3.3 Speckle Interferomet:rv

X } It was to combat this loss of high frequency information that
Labevrie (1970) introduced the technique which became known as speckle
interferometry (Gezarie, Labeyrie, and Stachnik, 1972). Where long
exposure imaging is equivalent to summing a series of short exposures

and thus their Fourier transforms, speckle interferometry consists of

the addition of the squared magnitudes of the short exposure image

transforms (i.e., spatial power spectra) as follows

o (u,v) = <iIu,v) 1%

10Cu, vy |2<ITCu,v) |2

¢O(u,v)<|T<u.v)12> (3.4)

where ¢I(u.v) and ¢O(u,V) are respectively the image and object average
(spatial) power spectra and |.|2 denotes the squared magnitude of a

complex~valued quantity. This averaging of {T(u.v){z. which is alwavs
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> a non-negative quantity, prevents the loss of high frequencies, which
)

::fiﬁ. was the main drawback of long exposure imaging.
s

ety 1 il
i.' Korff (1@73) has derived an analvtic expression for <IT(u.,v)i~>
if“ based on lognormal intensity statistics, which agrees closely with
3
B e . . .

~ Fried's results (Fried, 1966). However, this expression requires

r 3 Y
-'..

®
7

considerable numerical evaluation, which limits its usefulness. Daintv

9
(1984) has shown that a good approximation for ATCu,v) 17> is

,.
s

.

i e
AT(u,v)| o> = [<T(u,v)>]° + kTp(u,v)

where <T(u,v)> is the long exposure transfer function, TD(u,v) is the
diffraction-limited optical transfer function of the telescope, and
k < 1 is a constant inversely related to the number of speckles in the
image.

Now, assuming that information about the transfer function
<fT(u.v){2> is available, either from a reference star (point source)
or from one the theoretical derivations mentioned above, ¢O(u,v) may be

recovered from Equation (3.4). Inverse transforming yields the average

spatial autocorrelation

®_(x,y)> = F‘1{¢O(u,v)}

= <i(x,y) 60 i(x,y)>

where 00 denotes autocorrelation.
The limitation of this method is that one obtains only
autocorrelation or power spectrum images rather than true images of the

object. Phase information is lost, and as is noted in Oppenheim and

CCwReNRRRene |




Lim (1974}, this information is generally more important than arplitude

information for signal reconstruction. Bates (1982) has presented a

comprehensive review of what has become known as the "phase prorlem "

e

the inability (in general) to uniquely determine an otjiect oflx,v) from
its power spectrum. In certain special cases, however, such as a
centro-svmmetric object, the Fourier transform is purely real and
determination of o(x,y) is possible. Also, other useful object
information, such as the distance between two point sources (e.g.,
double stars) or an estimate of the spatial extent of the object, mav
he recovered from the autocorrelation data.

Since the introduction of speckle interferometry in 1970, much
effort has been centered on methods of recovering an object from its

autocorrelation or power spectrum, and we will discuss several of these

algorithms in the following sections.

3.4 Speckle Holographv

The technique of speckle holography (Bates, Gough and Napier,
1973; Gough and Bates, 1974) demonstrates that the object o(x,y) may be
reconstructed from interferometry data, provided an unresolvable
reference object (point source) such as a star is present. In this

case, following the notation of Dainty (1984), the object may be

represented as a sun of two parts
o(x,y) = 8§(x)8(y) + ol(x-xl.y—yl)

where §(x)8(y) is the Dirac delta function denoting the reference

object and o,(x-xl.y-yl) centered at (xl.yl) is the object of interest.
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T6 x > 3x /2 and vy > 3y /._. where x and v are the extent of o (x,v)
1
i o} “1 0 o] (] 1 ’

:n the x and v directions, respectively, then the spatial autocorrela-

tion Ro(x,y) separates into three distinct parts
Ro(x.y) = ol(—(x+xl),—(y+yl) +
[8(x)8(y)BBI(x)S(y) + o,(x.y)oeol(x.y)} -
Ol(<x‘xl)'(y-."l>)-

That is, the central component of Ro(x.y) consists of the autocorre-
lations of the two parts of the object, and the outer components
consist of their cross-correlations. One of these outer components
will be the correctly oriented object of interest and the other will be
a 180° rotation, so the object can be reconstructed within this
rotational ambiguity.

Practically, the object may not always meet the separation
requirements Xy > 3xo/2 and ¥y > 3yo/2 even when a point source is
present, so that the parts of Ro(x,y) are not completelyv distinct. Liu
and Lohmann (1973) have suggested 2 procedure similar to that of
speckle holography in which they utilize the fact that the leng
exposure image does contain lecw frequency phase information. This
information is incorporated into their algorithm by using the long
exposure image as a mask to select the correct components of Ro(x,y)

and eliminate autocorrelation terms.
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3.5 Speckle Masking

Related to speckle holography 1s the speckle maskilng technique
developed by weigelr (weigelr, 1977; Weigelt and wirnitzer, 1983), wno
has suggested that 1t may be especiallyv useful for imaging double
stars. ~he major difference between speckle hoiography and specxle
masking 1s that in the former, an unresolvable reference object 1is
required to be present while 1n the latter, each speckle image :is
preprocessed nonlinearly to create a svnthetic reference object.

To implement this algorithm, one first calculates the average

1mage triple correlation
il y)i(x-m y-m ) ]001(x.y)> (3.3)

where (mx.my) is the masking vector, e.g., in the case of imaging a
double star, (mx'mv) 1s the separation which may be obtained from
interferometry data. Weigelt has then computed a correction term
(weigelt and Wirnitzer, 1983), which allows the calculation of the

object triple correlation
<[0(x.y)c(x-mx.y—my)IOOo(X.y)>

from Equation (3.5). The object o(x,y) may then be reconstructed

provided that (mx.my) was properly chosen to give

[O(x.y)O(x-mx.y—my)] = 8§(x)8(y).
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3.6 Knox-Thompson Method

Knox and Thompson (1974) have proposed a method that involves
the autocorrelation of the Fourier transform of the speckle images

rather than the image power spectra. The algorithm calculates

Alupv )y v,)> 0Cu v )0%(uy, vo)<TCup, v )T (U, v,)>

- -

O(u, v)O*(u+bu, v+Av)<T(u, v)T*(u+lu, velv) -

where Au = Up=ty and 4v = v,-v, are small compared to the correlation
length of I(u,v). Denoting the phase of O(u,v) by ®(u,v) and the phase

of T(u,v) by B(u,v), we mavy write

Ilu v T (uy,v,)> = 10Cu,v) | {0(u+bu, v+av) |
* exp(i{o(u,v) = o(u+tbu.v+Liv)])
#|T(u, v) | [T(u+bu, v+av) |
*exp(i[8(u,v) - 9(u+ldu,v+Av)]).

(3.6)

Dainty (1984) has shown that the phase difference [9(u,v)-5(u+du,v+av)]
= 0, so that the phase of the right-hand side of Equation (3.6) is
approximately [o(u,v) - ¢(u+du,v+4v)]. Thus we may generate a grid of
phase differences for the object and may obtain the relative phase for
each point in the Fourier transform of the object by summing the phase
differences between it and an arbitrary reference, say, the origin.

Since the modulus of the transform is available from the interferometry

data, object reconstruction is then possible (within a position

ambiguity since only relative phase may be computed).
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3.7 Fienup's Iterarive Alaorithms

Fienup (1978, 1979) has suggested an iterative approach to
obtain object phase information from the modulus of the Fourier
transform O(u,v) , which is known from speckle interferometrv. His
approach, called the error reduction method (Figure 3.2) because the
mean-squared error decreases at each iteration, is a modified version
of the Gerchberg-Saxton algorithm (Gerchberg and Saxton, 1972) and
consists of simply changing the object constraints in this well-known
method.

Beginning at the kLh iteration with the object estimate
ak(x,y), this estimate is Fourier transformed, vielding 6k(u.V)
iék(u,v)iexp[iék(u,v)]. The Fourier domain constraint consists of
replacing lak(u,v){ with the known modulus lO(u,v)! The quantity
]O(u.v)iexp[iék(u,v)] is then inverse Fourier transformed producing the
image Sé(x.y). which is then forced to obey the spatial domain
constraints. The principal spatial domain constraint is
non-negativity, although other a priori information about the object
may also be included, e.g., we know the object autocorrelation from

speckle interferometry and the object diameter cannot exceed half the

extent of the autocorrelation. Thus the new object estimate
e

~1

ok(X'Y)' constraints satisfied

~ Y )
°k+l(x'y =

0, constraints not satisfied
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i1s formed. This entire procedure mav be starte® wit" ar .-
¢.(u,v) or a random :l(u,v) if a better estimate 1s unaval.a:.e.
In pracrice, Fienup has found that although convercence s
initially rapid, it soon becomes extremelv slow, requiring an
impractical number of iterations for a good reconstruction.

7o combat this problem, he has déveloped the input-output

approach (Figure 3.3) in which the new object estimate is a

modification of the previous one

Gk(x,y), constraints satisfied

~

Okﬁ-l(x'y) =

~ ~t . . .
ok(x.y) - aok(x,y), constraints not satisfied

where a is a constant. He has further found bv experimentation that
the swiftest convergence is achieved by periodically varying the method

of forming 0, ,(x,v) after every few iterations.
k+1 ‘

3.8 Shifr-and-Add

Unlike the methods previously discussed, the shift-and-add
algorithm and the related method which will be examined in this section
do not attempt to reconstruct the object from its power spectrum or
autocorrelation or to use other information about the Fourier modulus,
.mage separation, or image extent which are made available by speckle
interferometry. Instead, they attempt to obtain a true image of the
object directly from the short exposure images.

Shift-and-add is an extension of a method previously developed

by Lynds, Worden and Harvey (1976) (or Worden, Lynds and Harvev, 1976),
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Figure 3.3. Fienup's input-output method.
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wno vealize:z nnat eacn speckie of a short exposure image 1s 1tself a
distortes imaze of tne object. Their procedure involves the 1dent:fi-
~ = ~ b

ntest speckles, thus creating an

o
[
pd

i)
8]

cazion and superpositicn ci the

oA Qv - T \
improved estimate of the object,

According to Bates (1982), this procedure is limited by the
fact that manv celestial objects are so faint that a tvpical short
exposure image contains f{ew speckles, and he and Cady (Bates and Cady,
1980; Cady and Bates, 1980) have extended the methcd to compensate for
this problem. In their approach, each short exposure is shifted so
that its brightest speckle is located at the origin, and all such
shifted images are summed, thus the name shift-and-add. Assuming that
this processing is also carried out fer a reference star, tne
shzft-and-add image of the object of interest may be deconvolved using
the shifz-and-add image of the reference star as a point spread
funcrion.

The beauty of this method is in its simplicity and ease of
implementation as compared to the methods previously discussed, and
according to Bates (1982), it may be digitally implemented in real
time. Further improvement in the output image has been obtained
(Bates, 1982) bv a method called adjusted shift-and-add, in which each
pixel :1s multiplied by the value of the brightest pixel before the
summing operation, and Bates and Robinson (1982) have devised a
slightly more complicated version of shift-and-add, which they have

found useful i1n ultrasonic imaging.
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We, however, will restrict ourselves to the original, simnle

version of the algorithm and will present a theoretical analvsis of the

method and various simulation results in the following chapters.
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CHAPTER ¢

ANALYSIS OF THL SHIFT-AND~ADD ALGORITHM
FOR LOGNORMAL INTENSITY STATISTICS

The simplicity of the shift-and-add algorithm described in
section 3.8 leads us to ask why this method forms an improved estimate
of the object. This question has previously been addressed in some
detail by Hunt, Fright and Bates (1983) for negative exponential
statistics. Here we snhall present an analysis (which draws heavily on
the earlier one for notation and modelling) using the lognormal
inzensity statistics which were justified in Chapter 2.

To facilitate our discussion, we will now adopt the standard
mathematical model of the speckle process. We are changing notation
from that of section 3.1 to be more consistent with existing
shift-and-add literature. is model assumes that image exposure time
is so short that the atmospheric amplitude and phase variations are
essentially frozen and also makes the assumption of isoplanaticity,
i.e., the assumption that the atmospheric point spread function is

shift invariant. With no loss of generality and to simplify notation,

we shall restrict our analvsis to one dimension. We denote the mth
speckle image of the object f(x) by
= * ( 1
Sm(X) hm(X) f(x) + cm(x) (4.1)
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where m 1s a time 1index, hm(x) is the mth short exposure speckle point
spread function, * indicates convolution, and cm(x) is a general
contamination term that includes all other degradations, i.e.,
recording noise, svstem nonlinearities, photon noise.

within this framework, the shift-and-add process is easily

described. It consists of finding the maximum value of each spatial
image and the spatial coordinate Sm at which it occurs, translating the
image by Em so that the maximum value is now located at the origin of
coordinates, and summing all such translated images. For M speckle

images, the shift~and-add result s(x) is expressed by

(x) = A + & (4.2
s(x) 1/M sm(x sm) ( )

1

e~

m

With this model established, we proceed to explore our original
question: why is s(x) a better estimate of f(x) than are any of the
individual frames sm(x)?

We first consider this question qualitatively. According to
Bates and Cady (1980), the brightest portion of each speckle image
sm(x) is likely to be a distorted version of the brightest portion of

“8 £(x). Thus because of the linear nature of the degradation model and

of the shift-and-add process, superposition of distorted versions of

areyr

,\
S

the brightest portions of f(x) necessarily implies the correctly

registered superposition of all other parts of f(x).

4,1 Derivation of the Point Spread Function

Now we perform a more rigorous analysis of the shift-and-add

method by considering the case of a single point source (Dirac delta

Y s
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function) object and finding an overall point spread function for the
degradation plus shift-and-add processing. Wwe will at this point

ignore the contamination term cm(x) so that Equation (4.1) becomes
s (x) = h (x).
(0 = h (%)

Thus the overall point spread function h(x) 1is

M M
h(x) = s(x) = 1/M mzl s (x+E ) =1/M L h (x +E )

-3

o
-
‘f:‘l‘
e

as is obvious from the linearity of the method.
Following the derivation in Hunt, Fright and Bates (1983), we

introduce a change of notation

c (x) = + £,
m() sm(x »m)

o
4y

MMW&&W b

¥

i.e., the Om(x) are simply the speckle images translated so that the
maximum value is found at the origin. This leads to the shift-and-add
result

M

s(x) = 1/M X Om(x).

m=1
At each fixed x, this is simply a sum of M random variables, where we
note that for lxl very ;mall, correlation in the images necessitates
that cm(x) = om(o). while for |x| larger than the correlation length of
the speckle process, cm(x) and Om(O) are effectively independent.

Therefore, for large M,

M
lim s(x) = lim 1/M | o0 (x) =-> E[o_(x)le_(0))
Moo Moo m=1 " m m
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where E[ -] denotes expectation, and we will assume M large enough that

lim s(x) = E[om(x)}cm(O)] (4.3)

Moo

in the following calculations. We also define for future use the

uantity s :
q y max

M
=1/M ) o (0) |
m=l 7

s
max
or for M large, we may assume Smax = E[Gm(O)].
Again, following the notation of Hunt, Fright and Bates (1983),

we let

—
[

1 Gm(O)

—
]

2 Sm(x).

As we are assuming lognormal intensity statistics, I1 is governed by

the probability density function

P(Il) = exp > .

7 £
Ilclv-ﬂ 2c1

and similarly for 12. In this expression, log denotes the natural
logarithm (base e), and By and cf are respectively the mean and

variance of the normally distributed random variable log Il‘
To calculate the expectation in Equation (4.3), we need the

joint density function for I, and I,, which we will assume to be

jointly lognormal:
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(6.4)

where o is the correlation coefficient for the associated normal random
variables log I1 and log Iz. We have made such an assumption because
it is necessary in order to achieve analytic results although we are
well aware that it is not generally valic to do so simply given that
the variables Il and 12 are both marginally lognormal. Also we rote
that the x dependence of p and of M, is not explicitly stated in
Equation (4.4), and we will comment further on this later.

Then with our previous assumptions, we have

' 1

- (logll-ul>202 (loglz-u2>2 , (logll-ul>(xogl:-u2>
———— * A ————— - D
1 CR o, o, o,

z ————exp

lacavzﬂ“-oz) 2“-02)

and we may write the desired expectation

-]

5[12}11] = lep(Ilel)dIZ

2 2
. - <Jogll-u1) 02 . <lng12-u2) % <Ioglj-u])<lng1:-uz>
1 a c o]
I exp 1 2 ! o2
0

o

(6.5)
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This integral is evaluated in Appendix B, giving
. CC,/Cl A 3
E[IZ’IIJ = I1 exp[Uz—ou1 02/0l + cz(l—c )/2] (4.0

To give some intuitive feel for the expression, we will
evaluate it for some extreme values of the parameters. Also needec for
~his evaluation are the following relations (see Appendix A) for anv

iognormal random variable I:

,
s = E[1] = #0772

and

"
2 2u+C” <

-e’m"'C (ecJ ~-1)
2

2. ¢
“I1>7(e -1)

wnere as before

¥ = E{log I]

2
¢” = var{log I].
Tirst we consider the case where I2 and Il are completely uncorrelated.
Recalling that Il = cm(O) and 12 = cm(x). this is simply the case of x|
Thus FEquation

>> 0. This corresponds to the parameter value ¢ = 0,

"4.6) becomes

2
Ua+C.,/2
- -

3[12;111 = e = <l

which 1s exactly what one intuitively expects.
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Next we consider the case of I, and I1 perfectly correlated,

i.e., x: = 0. This corresponds to the parameter value p = 1. For

this case. 1t :s also completely reasonable to make the further

2
= GL.
2

\

A
assumption that W, * L, and OI Then evaluation of ELquation (4.6

vieids

cir
o :[Iq-xl] = Il

£ e

: which accords exactly with intuition.

;: At this point we observe that Equation (4.6) is entirely

r _

*. specified by parameters associated with the normal distributions of log
I 1, and log I,. Wwe shall assume that the speckle 1images are spatially

¢ 1 2

= stationarv, or at least wide~sense stationary, an assumption actually

valid only near the origin (or only locally), which implies & constant

mean and variance

<I,> = <1 = <I>

3

i
3 - 2 2
v ¢y =c] =3
- 1 2

=<

FENE IR %) —..n’-'
[ .

My =M, =l
. 2 2 2
l cy=c5 =<t
&
& Having made this assumption, our further analvsis will be stractly
i |
- valid only in the region of x; = Q. Since we are particuiarly
-
i .
¥
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S
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interested 1n this reglon--to see how closelv s(x) resembles the

original object 3(x)--our results should vield the desired 1information.

Returning to our notation of :q(O) and :n(x) rather than :l and

I.. W& now nave

-

ol )

(200 (03] = ¢ (0) explu-obac T(1-5) /2]

trt
n

o)

=0 - 2 H
om<0)<1>1 o exp[”(l,o’o'] (4.7) ?

ané our next step is to relate & = 2(x), the correlation coefficient of
log ¢ _(Q) and log Cm(x). to r(x), the correlation coefficient of cm(O)

anc Cm(x). Bv definition,

covil,, 1.]

[

-~
-

so we will now determine the quantity E[I,I,]. Wwe make the same
172
assumption that Il and 1., are jointly lognormally distributed as was
.

made in the calculation of E[IZZII]. Thus

2
f ! v
ELILIZ] J;IZ*lp(IZ'Il>dIZdIl

00

2
ogll-ux logl:-u: “"ll‘ul logl.-u,
. o 9, ‘ c, - ® o, z.
. “ ex - = gl dt
2n0 9, 1-02 00 2(1-02) )

1

This integral is evaluated in Appendix B, giving
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2{xVT, T,
of — M T i -
' _ _.ILI:] = 1. ~l\e
N so that
S{x)<c. <,
. <1,><1,>[e L s
Je rf{x) = —=—— .
MII‘\-Iﬁ
e i -
o :(x):;:ﬂ
<141><11>[e - 1]
- = e
e 2 >
- cy <Y,
’ <12><Il> V%; . 1) {e"~-1)
S Making our same stationarity assumptions, which imply that €, =09,=¢,
- 2
we obtain
g (x)0?
. s(x)o° |
P e Yol
r(x) = 5
¢
e e - 4
lb SO that
g 2 2
o= p(x) = 1/¢” log[l + r(x)(eC® - 1)]
Now
. 2 2 ﬂ2
4 cr = <D>7[e® - 17,
S SO
. 2 2, .2
c” = log{l + CI/<I> )
-4
B and after some algebraic manipulation
gR (x) 152
- lo x) - log<
e 0= o(x) = B
logR(0) - log<I>~
- where R(x) denotes autocorrelation. Assuming ergodicity, R(x) = Rs(x),

the spatial autocorrelation of the speckle 1mage.

Substitution in Equation (4.7) and further algebraic

——
..

sumplification yields
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log<I> ]
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10gR_(0)-log< 1>~

tey
«
P
4
[
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vopes

[Zlogfm(oﬁ*logRs(O)-logRs(x)J

10gRS(O)—log<I>:

ané since we are implying that M -> = by using the expectation, we ha.e

the desired result

lim s(x) = E[z_( (x)ic_(0))
Moo m
"
) [ log<I>” ]
s iogR_(0)-log<I>”
max S

[ZlogsmaxologRs(0)—1ogRS(x)J

rof -

logR_(0)-log<1>?
X Rs(x) S

—

-~
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The obvious question at this point is how to characterize Rs(x)

in order to give this complicated expression some meaning. There

appear to be three options available. First, one may actually measure

Rs(x) from the speckle images. We had no real data available but have
included plots of sm(x) and the corresponding Rs(x) taken from images
simulated by the method of section 5.1 in Figures 4.1 and 4.2

Kor ff (1973) has developed an expression for <}T(f)[2> which is

the rourier transform of <Rs(x)>. Calculating <iT(f)12> and inverse

Fourier transforming is our second option. Unfortunately, evaluation

2 ) . . . el
of < T(f),”> requires extensive numerical computation and specific
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Figure &4.1. S, () for varying degrees of turbulence. -- Taken from
horizontal or vertical slices through the maximum of

simulated images.

DI O -, .-_ T e T T e T
PP e, -~ ,-.._,,- RS ~ \ S T N
A 2 -~ . : BN
LW NN LY '.‘--L.“nﬂ\ ’L_‘n.n WA u.‘n-ﬁ\;;-;-k\.\.‘\’"ﬂ n:J\-J.L AL .x;!u.").mﬁ\} ‘;. -L' \




'J
+
.
a
3
[y
4

i\

9 \
!

< \

-1
‘_.u
-
R

‘
g

+

(4)
(

I

8

-

(c)

R (x) for varying degrees of turbulence. -- Forizontal or
vertical slices through the autocorrelation 1maces
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parameters for the atmosphere and optical svstem, so we shall consider
our third possibility.
L This thard option for characterizing Rs(x} 15 an approximation

to Norif's result developed by Dainty (1675). Dainty has claimed that

s

e Xorff's result is in "broad agreement"” with that obtained by the

- . 0 9
- CTUE)IS> = I<T(E)>,° + kT, (£)

. ' -~ ( . s
where <T{f)>,7 is the squared modulus of the long exposure transfer
Junction, TD(‘) is the diffraction-limited transfer function, and k < 1

1s a constant depending on atmospheric and telescope parameters. As in

N Hunt, Frignht and Bates (1983), we inverse Fourier transform this
. g )

:

i equation, obtaining

<Rs(x)> = 1(x) + kKa(x)

{
*
wnere Ll{x} i1s the long exposure component of Rs(x). i.e., the
ﬁ{ autocorrelation of the seeing disc; a(x) is the diffraction-limited
: component of Rs(x). i.e., the Airv disc of the telescope; and K is a
L.
R . ‘ 2
R normalizing factor required to force <RS(O)> = <(I7>,
pi ¢
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Then from Equation (4.8),
[ log<I>2 J
lim s(x) = s loe<I:> - iog<I>:
Vo T max
2 .
1 210gsmax+log<1 >-log[1(x)+kKa(x))
2 3 7
x [1(x) + kKa(x)] log<l=> - log<I»
(4.9)

The first term of this expression is a constant, so diffraction-limited
behavior will occur in the second term depending on the relative
magnitudes of 1(x) and kKa(x); that is, if the diffraction-limited
kKaflx) is large enough compared to the broad smooth function 1(x).

This discussion, together with Equation (4.9), completes our
characterization of the point spread function of the shift-and-add

process.

4.2 Analvsis for Two Point Sources

The next degree of complication in this procedure is obviously
to consider an object consisting of two point sources. The behavior of
the shift-and-add process is unchanged although now the possibility of
ghost peaks exists, and it is the probability of such an occurrence
that will be the major focus of this section.

we first define our object
£(x) = alé(x~xl) + azé(x-xz) (4.10)

where a, > Then clearly each speckle image takes the form

1 a2.

' -
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sm(x) = alhm(x—xl) + alhm(x—x:), (&4.10)

where we are again ignoring the contamination term. Shift-and-add
processing will allow objects to be resolved, each witn a profile of
the form of Equation (4.8), if the distance 1x2~xl: between the two
point objects is greater than the correlation length of rthe

diffraction-limited component of the speckle image. At this point we

i

define some notation

‘(4

4

»:'.'

g’ w = 32/31

i <I.> = mean value of a.h (x-x
o 1 1 m( l)
":

< = -

: <12> = mean value of azhm(x xz)
W = Wil

v <
S ¢y = variance of a.h (x-x
£ 1 1P (x=%p)
-, 51
. c; = variance of a.h (x-x
2 °1, 2N (%=%p)
. 2.2
4 = w C
' I
il :
M where of course we are concentrating our attention on the central

.
PRty

portion of each speckle pattern aihm(x—xi) where the speckle image mav
be treated as a stationary random process with constant mean. With

this notation established, we™may use Equation (4.8) to define a

N A I o
e Pl
» e
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composite shift-and-add profile
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5

-[ log<Il>- ]
log<II>-1og<I >€

s(x) = s !
max
2
1[210gsmax + log<ly> - “’gRs(x-xl)]
2 2 )
< > - < >“
XR (x - x.) log Il log I1
3 1
-
10g<I2>"
-[ . 7]
log<15> - log<l,>”
+ (ws )
max

5
[ZIng * llogs .. * log<11> - logRs(x-xz)}

rof

3 3
log<II> - log<l>”
X [WR (% - xy)]

This result is no longer valid when the point objects are separated by

less than the correlation length of the diffraction-limited component

of the speckle images. In this case, the point spread functions from

the two objects overlap and the simple lognormal statistics used to

g )

derive Equation (4.3) are no longer valid. For the remainder of our

- discussion, we will assume that the two point sources are separated by
C more than the correlation length of the diffraction-limited component
o of the speckle images.

s 4,.2,1 Analysis of Ghost Peaks
Under this assumption, we will now carry out the analysis of
ghost peaks for the two point source object of Equation (4.10). As

noted in Equation (4.11), the individual speckle images are of the form

L T Ty Ty €T WEN YY)
s
e

Y = - -
sm(x, alhm(x xl) + azhm(x xz), 3 > a,.

-

P———
.
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For the shift-and-add process to be carried out correctly, the maximum

value of sm(x) should be the maximum of alhm(x-xl). There are two wavs

that this may be prevented from occurring. First, the sum of any two

speckles from alhm(x—xl) and azhm(x-xz) may exceed the sum of the

maximum of alhm(x-xl) and any speckle from azhm(x-xz). Intuitively,

-;; one would not expect this to occur in any systematic fashion, since

1!‘ this would be completely unrelated to the maximum of azhm(x—xz). Thus
E\ if this error occurred repeatedly, it would result in a general

;:; randomness in s(x) rather than in a false peak. The second way that an
gé‘ incorrect maximum may be chosen will result in a ghost peak_;f it

:S. occurs repeatedly. This happens when the maximum of azhm(x-xz) plus
i;' anv speckle from alhm(x-xl) exceeds the sum of the maximum of

alnm(x-xl) and any speckle from azhm(x-xz). The probability with which

»
.

this occurs will determine the relative magnitude between correct and

false peaks.

Therefore we will calculate this probability using the notation

-

of Hunt, Fright and Bates (1983). We let

“y
L

LA T
.

z = maximum of alhm(x-xl)

o~

A" _xn
A

—
\2

‘
»N

€
]
N
—t
v
"
m| »
— |9

ey

x

wz = maximum of azhm(x-xz)

r.v.(l) = a random variable with probability density

"'_n'- o ‘.‘ N !m‘r-v(Y"._
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-

1 -[logly-u]

p(I,) = ——— exp{ ————=—
1 1.c.v/27 20°
171 i

a speckle from alhm(x—xl),

L}

and r.v.(2), likewise.

e then define

u = z+r.v.{(2)
v = wz+r.v.(l)
i:f. The probability that the correct maximum of sm(x) will be chosen is
i P {ud>v] and the probability that the maximun of azhm(x-xz) will be
l ) chosen instead is P [v>u] =1 - P [u>dv]. (We are ignoring here the
T ‘. possibility of two speckles adding together to exceed either u or v.)
| IS Now, for each speckle image, both the magnitudes and positions
i‘ of z and wz are fixed. Also, given our assumption that the two point-
'l ‘ source objects are separated by more than the correlation length of the
l diffraction-limited component of the speckle images, we may consider

r.v.(l) and r.v.(2) to be independent but conditioned on z. Thus

which from simple probability is
.

~[10g(u-:)-u3]2 llog(v-wz)-u, ]~

!! p(u.viz) = plufz)p(viz)
i’

A} 1
! u,v|z) = —2 -

X plu,viz) 276,6, (u-z) (v-wi) exp 702 2
\‘ - .: 1
Wie will now simplify this expression by recalling

st
: <Il> = mean value of alhm(x-xl)
bl ’ <1,> = mean value of a,h_(x-x,) = w<I -
.‘-:‘ - « M - 1
¢
e

!. .y _‘I‘?r‘.-r__r\r, -‘.'( ‘\'4 \'

T
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¢,~ = variance of a,h (x-x.)
1 m 1
L 2 2
GI; = variance of a hm(x-xq) = w <I>
r) S —

and for lognormal random variables

-

ey 2
S = "1™l
<11, e

2
~ -~
2 2, 71 . . o -
= = <1.>"[e - 1], likewise for «<I1.,-, T,
1 1 2 I,
1 2
This leads to
s - >
a. Cr = C*
'g- 2 1
e Hy o=l + log w,

S0 we set

i
Q
"
Q
"
Q

iR rcen-,
N

o

N

and

(3 .
R
o

X -[1og (35%)-u) - [1og (v-w-z)-u]

‘ 1
p(u,v;z) = gl (U-2) (V-WwZ) £Xp 202

P

v Then the probability integral of interest is

.:"‘

P © Yy u=-2 2

- 2 -[log (—=)-u]

‘ - V-w2)-U 1 w

f Plvou] = —— U L exp{ [1og(v-uz)-u] }u_z exp{ v }dudv_
: 2mc - 20 pioh

- w2z

; We first consider the case of w = 1, for which the integral is analytic-
o ally evaluable. Then

F‘

—
P o v E A o we e
R L - » > . - . e et . ’
] '\, - - 1 \, ,.\.- v, ! ,( o .-.1.-. - q T - L { "".""‘-"" ""'
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and we maxe tne change of variabdie
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% e,
L

(el
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[
N
N

to obtain
o) )
[s-u]”
- - <
V==

-] S

1 ([ 2 25°
J je e dtds
-] {s o]

‘.." ‘t

1 4
o

LM

Y

and using the evaluation of the normal probability integral from

<

Abramowitz and Stegun (1970)

.
[s-u]”

-y

A
o f 262
- P [v>u] = 1___) e [1 + erf(—— :b]ds
: ZOVVZTT-Q ov2
We now let
o e S2¥
o2
and the integral becomes
. o o
. { - 1
P [v>u] = —{-:J dpe p - — [ dpe” erfp.
27 4 v 2

The second integral is equal to zero because its integrand is odd, so

our result is P [v>u] = 1/2, which agrees entirely with our intuition.

The obvious question to address at this point is how fast this

Unfortunately, for values

probability decreases as w decreases from l.
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of w oiner than 1, the integral 1s anazlvi:icall: intractadle so we
resort o numerica. 1ntegration. Mumer:ical 1ntegratinn requires
zalculat:ion of this probability 1n tne form B Tvoul = 1 - P gt ot
avors logarithms of negative numbers.  Thus we are to caizulate

®© y - -~
P - N U=y . -

o \ X ‘ N -liogiv-wzi-U) 1 [‘°§~‘;"'—] v q
JoUV o= = —eXpD <X - \ U
D IR S o~ G-z P S
Tz owz - -

and making the usual change of variable
= log(v-wz)
. u-z
= log(—=—).
the tntegral becomes
t -
log(we +(1-w)z)
N f - ]"
1 ‘ -[s-u]" -lr-u]-
+ H % -
Pludw] = —= . exp J—'T— exp 5 Asdt.
2re 2c° 2c”
-0 o 00
Etvaluation of the s integral vields
1 T u]2 log[wet~(‘ wiz]-t
-t- i-w)z]-u
P {udv] = J exp = 1+ erf ( ) dt
— 2 =
20v2m 20 ov2
2
o . Ly

tog{webte(1-w)z) kdt

, -
Wwe let p = ——f_and obtain

ove
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To avord evaluation of 3 Zcuble 1nteeral, we have used the

following expression from Abramow:tz and Stagu

approximation for erf x:

it

¥ R RY
t
1

.

'
e
iD
-
-h
<
it
y—
|
—
]
(i
+
3
b
rt
+
[+Y])
)
«
+
[t}
-

vhere
1
1+px

T =

-

e(x)i < 1.5 x 1077

N AR T

, 3275911

o
[}

. 254829592

W
|

- a, = -.284496736

~d

= 1,421413741

a, = -=1.453152027

ag = 1.061405429

The integrand of Equation (4.12) is plotted in Figure 4.3, and the

integration results for three sets of parameters are summarizcd 1n

Tables 4.1 through 4.3.
The probabilities of selecting the wrong maximum seem

unrealistically low, although they mav indeed be realistic given the

relatively large separation between the original point sources that we

assurmed in the modelling. However, we do in part attribute the low

probabilities to the absence of noise and nonlinearities in the

derivation and possibly to our assumption of constant means and

variances <Il>‘ <., cI . cI . This essentially is an assumption of
- '
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";E Table «.1. Probability of selecting wrong maximum:

. average parameter values. -- J1.> = 1..6;
S5 o1y, = 27.1; and z = 243.55. <I)» and O
e for this table are the average values of

the parameters (100 sets) supplied bv Jon

1. Freeman.

o

b
> P (v > u)

;i: 7-Point
- Second Max Gaussian
3 w wz Simpson's Rule Quadrature

. 500 .500
.356 .336
.052 .052
.0035 .0035
.0003 .0003
.00003 .00004
. 000004 .00001
.000001 .00001
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Table 4.2. Probability of selecting the wrong maximum:
parameter values from a saturated frame. --
<Il> = 135,72; GIL = 37.35; and z = 255.
P (v > u)
7-Point
Second Max Gaussian
w Wz Simpson's Rule Quadrature

1 255.00 .500 .500

.9 299.59 .0063 .0063
.85 216.75 . 0006 .00059

.8 204.00 .000064 .G000™2

.h-m.u,.- .; -.‘M‘"‘ e Ay o '.A”Nt‘n 3 arvgaeen 1, ,. - P .
- L . F L T Ty e “:,&1‘,";'( W, ;W_.m. o m 4
L o N Lo 1, Ffe’a’

.75 191.25 .0000089 .000017

o e

.5 127.50 .000001 . 0000099
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Table 4.3. Probabilitv of selecting the wrong maximum:
parameter values from an unsaturated frame. --
<Il> = 9,53, 311 = 16.44; and z = 218.00.

P (v > u)
7-Point ’ |
Second Max Gaussian
W w2z Simpson's Rule Quadrature

218.00
215.82
207.17

196. 20

.500 .500
L334 .334
L0342 . 0342

.00166 .00166

.85 185.30 .0001 . 0001
.8 174.40 .00001 .G0002

163.50 .000002 .00001

~4

w

109.00 .000001 .00001
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¥ stationarity which is in actuality valid only in a small region about
< :
; e
AR the maxima z and wz.
R

¥y
14t
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In spite of these unrealis-ically low probabilities, we may

’;j still draw the important conclusicn that the correct maximum will be
iz
.?f chosen in the majoritv ..f frames and the shift-and-add process carried
SN
' out correctly even when the original point sources do not differ
i
b ﬂ.; - .
- greatly in magnitude.
[ T
N {*
) - . .
o 4.3 Analvsis of the Extended Object Case
S
} ‘e now address the case of most practical interest, the case of

.
LY

an extended object rather than a set of isolated point sources. We

then rewrize Equation (4.1) for this case

- -]

sm(x) = f f(x—xl)hm(xl)dxl + cm(x) (4.13)

“m

-
L ) ‘a‘- ',a lﬁq'/l '.(.

€ e m————
" e .
. "
LA,
R

as a convolution integral, again following the notation of Hunt, Fright

and Bates (1983). Ignoring the contamination term, sm(x) is, for fixed

a
v

x, an integral of lognormal random variables hm(xl) weighted by the

“Fel e

object itself, f(x-xl). Digitally, of course, this becomes a weighted

sum of lognormal random variables, or just a sum of nonidentically

o ramanet " J'!.r-uu‘. L P,
Y WP .

distributed lognormal random variables.

Thus the relevant question is: what are the statistics of sums

LI I
Pt
R

-
Vi,

of lognorzmal random variables? For the case of N independent random

variables, the sum tends to become Gaussian distributed as N approaches

o« N

infinity bv the Central Limit Theorem. Barakat (1976) has investigated

L)
¥
[
§

this case, with the added assumption that the random variables are

identically distributed. His approach, as summarized below, 1s a
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specific case of a result obtained earlier by Cramer (1951).

consider the sum

where Xk are i.i.d. (independent identically distributed) random

variables, each with the probability density function
~

-[10gxk-u] - }

o
X, 0 27 2c“

>0

p(xk) =

0, otherwise.

Because the XP are independent, we have

and for convenience we rescale as follows

vvarX

7 (X-E[X])

vyvarXx

so that

E{Z] = 0 and varZ = 1.

Also due to independence, the characteristic function of Z is

N AT
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: Ele™™ %]z (1) = o, (1))’
- .g where ©
} § ¥ i
' i s (o) = | e prz ez
-~ z ] k k
§ K v
ol .
¥ ®  (10)"<(X-E[Y, 1)
» £ = 2
iflg n=0 (varX)nn!
,f ? Thus, with Sy representing the ith central moment of Z,
RN
o - ] 4
¢.(t) = (1 S P BVt TN
= - 3N - -~ 2/ b) ’
z 2N 6CJND/- 2404:\"
so taking the logarithm off both sides and using the expansion
T kel s¢
log(l+s) = E (-1)<" %T' -1 <s <1
k=1
4
= s -1/2 52 + 1/3 53,
we obtain
2 1U3t3 Hg30 -3/2
log & (t) = - =5 - VR + R O(N )
z 66°N'/- 240N
and -
2 iv,t
t°/2 1
¢ (t) = e (1 - + O(N" 7))
z 6NI/Z
where
) Y
b Y, = _/; is the coefficient of skewness.
us
. -2
,‘ ’ Fourier transforming yields
1 1 -2%/2 i -1
l p\(z) T —e (1L + 73 h3(z) + O(N 7)) (4.14)
Ty il 6N*
3 1
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. where h3(z) denotes the Hermite polvromial z7-3z. Thus for larpge

- finite N, sums of independent lognormal random variables converge to a
~ s . A w=1/2 .
Gaussian probability density function only as X . This result
shouid also hold qualitatively for non-identically distributed random

AN -

15 . . .
variables as long as the Central Limit Theorem conditions are met (see

Section 2.1.1),

i: Our problem is complicated further by the fact that our
t: logrormal random variables, hm(x), arc weakly correlated as was

o illustrated in Figure (4.2). We see from this figure that the

{% diffraction-limited portion of the autocorrelation is quite narrow;

. indeed the width of the base of the narrow peak is only twice the

i% extent of a speckle, Since Barakat's result is based on use of the

- Central Limit Theorem, we assume that it would also apnly (perhaps with
E even slower convergence) for random variables which are only weakly
‘l' correlated. This is due to the fact that variations of the Central

( Limit Theorem do exist for dependent random variables (Loeve, 1950;
g; Serfling, 1968; Hoeffding and Robbins, 1948). According to Serfling
(1968), the assumptions required for these Central Limit Theorems are

v 1n practice, not amenable to proof. It is further stated that many

experimenters feel that the Gaussian approximation is valid for
stationary processes which are observed for time (in our case spatial) ‘
intervals, which are long in comparison to the correlatjon length of
the process,

We have assumed that our images are stationary, at least

T. locally, and have noted that the diffraction-limited correlation length
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f Implicit in this calculation is the assumption of stationarity of the
3
ot speckle point spread function and the integrated speckle images, which
- we continue to emphasize 1s valid only near the origin.
W Inverse Fourier transforming Equation (4.16) vields the
R autocorrelation function Re(x) 1n terms of the previouslv discussed
.
‘a
) (section 4.2) Rs(x) = Rh(x) and the autocorrelation of the object
~
= D = #*
‘ ue(x) = Rf(x) Rh(x). (4.17)
:'5:
S As we noted, Rh(x) may be decomposed into a low frequency and a
: diffraction~limited component
i;‘
3 Rh(x) x 1(x) + kKa(x)
§ and we now suppese that the object power spectrum mav also be
%Z decomposed into low frequency and diffraction-limited components
2
C . ‘ 2
| Fw]? = 172+ [F ]
'
- or in the spatial domain ,
d Rf(x) = Rl(x) + Rd(x).
.
¢
3 Substituting in Equation (4.17) gives us
Iy
| J RA(x) = TGO*[R (1)4R (x)] + KKa(x)*R (%) + KKa(x)*R ().
L (4.18)
!
» Thus if the object contains a spatial frequency component out to the
T? diffraction limit, the profile of s(x) in Equation (4.15) may also
~
3
A
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g

contain a diffraction-limited component provided that the magnitude of

v

kKa(x)*Rd(x) is large enough relative to the remainder of Equation

¥ “". 1' 1,4

!! (4,18}, Addition of the correlation component due to the contaminat:ion
S term ¢ _{x) may further obscure the diffraction-limited information.
1

. Now we return to the case of a large object f(x) and assume a

Gaussian distribution for the speckles of sm(x). The analysis for this

?: case has been presented by Bunt, Fright and Bates (1983). As in

? section 4.1, the conditional expectation E[Izill] is calculated;

:; however, the conditional density function now takes the form

!

- (1,/1,) = L e S (141 >)-r(1,-<1 )7

> Piiqgity/) = > P 2021ty 2 e 17 e’

0 oV 2T (i-1) e

A (4.10)

el

¢

2 . ‘
where <Ie> and Ge are respectively the mean and variance of the

integrated speckle pattern and

R
r(x) =—e£,§-
g

)
]

e

Py Y
.

is the normalized correlation of the integrated speckle pattern. e

further note that r(x) is a zero mean correlation coefficient with

R A

r(x) < 1, and that the usual stationarity properties are assumed.

]

k',

Evaluation of E[Iz}Il] gives

".”A.'._'-."

R
. e(x)
ﬁ: ;1m se(x) = <Ie> + 2 [smax - <Ie>] (4.20)

e

where Re(x) is characterized as in Equation (4.18) but with the

. 2 i . :
quantity <Ie> subtracted because the correlation is required to be

zero mean. Thus
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Re(x) = l(x)*[Rl(x)H’.d(x)]+kKa(x)*Rl(x)¢kI\'a(x)*Rd(x)—<Ie‘>", (4.21)

desired, one may also include the autocorrelation of the

.p;
']
o))
jo
a
v
th

contamination term Rc(x). As before, we will obtain diffraction-

12
N
(]

R S TR TIRRAT T A

v

limited resolution if the magnitude of kKa(x)*Rd(x) is large enough

r
.

relazive to the other components of Equation (4.21). 1In both Etgquations

Rre g

~—
.

g
. X
e

(4.1%) and (4.21), l(x)*[Rl(x)+Rd(x)] and kKa(x)*Rl(x) are smooth

‘ functions and the useful information kKa(x)*Rd(x) will thus be found

a

-

riding on a broad background.

So, as noted by Hunt, Fright and Bates (1983), if Re(x)
possesses a large enough diffraction-limited component and f(x)
contains a strong point source, the linearity of the shift-and-add

process will reconstruct the extended object (on a background). Also,

a veryv strong point source should ensure that the maximum value is

- correctly chosen for each sm(x). Such sources may be expected to occur

-

often in natural imagery, e.g., an unresolvable star near an

g astrcnomical object of interest or a glint on the wing of an airplane.

In Chapter 6, we present supporting simulation results for

- K]
+ e,

»
FORY ST RTINS

shifz-and-add processing of a simulated astronomical object with a

near>y "star" and demonstrate that further improvement may be obtained

- A

.ot

230 RO BRI WM b PB4 a1

by Wiener filtering of the shift-and-add result.

4.4 Miscellaneous Results

In the remainder of this chapter we will examine other results
on t=e shift-and-add algorithm. In section 4.4.1, we will analyze the

queszion of convergence which is of considerable interest. Following
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. we will discuss some of the work of Bagnuolo (1984) in which he

this

examines the effect of nonisoplanaticity (i.e., lack of shift

1nvariance over the entire image) on the shift-and-add method.

4.4.1 Convergence of the Shift-and-Add Algorithm

In sections 4.1 through 4.3 we have analyzed the shift-and-add
method and found that it may produce an image containing
diffraction-limited information. In all of this analvsis, it was
effectively assumed that an infinite number of images was summed which
is, of course, not feasible in practice. Thus we are led to inquire
just how fast the shift-and-add algorithm converges--does it require

1ve or five thousand summations?

(& 3

To answer this question, we recall that for each fixed x
shift-and-add consists of summing M lognormally distributed random
variables, where M is the number of frames processed. These random
variables are independent, since they occur in different frames; and
since we are considering a fixed spatial position, we will also assume

that they are identically distributed. Hence, Barakat's (1976) results

That is, the
-1/2

(as discussed extensively in section 4.3) apply directly,
sum of random variables approaches its limiting distribution as M
We stress, as does Barakat, that this conclusion is valid only for

large M. We have observed in our simulations that convergence is nore

- 2
rapid for small M, say < 10. However, this would be true even if M 172

convergence is valid.

We may see this same result another way, by considering a

"noise-to-signal ratio" for the sum of independent identically

N S Y
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distributed lognormal random variables at fixed spatial position x.

1S, we are constructing a ratio of the spread about the mean to
g !

1§

the mean of the sum. For convergence, we wish this ratio to decrease

- } ] 4.1 and 1gnoring

N to zero. Fcllowing the notation of section
N contamination effects, we have the sum

M

B
-~ s(x) = 1 ©_(x)

m=l -

which has mean and variance

Els(x)] = ME[o (x)] = Mca_(x)>
2 cz
var[s(x)] = Mvar[Um(x)] = M(Om(x)>“[e -1]

.‘:_
"
(] where C° = var|log Cm(x)]. Then our noise-to-signal ratio for the sum
. is
".' p— J 0'2 hd
———— YM< >y e -1 /'c“
N vYvar(s(x})) M O (X) e -
- = = =
< > =
. S E(s(x)) M<o (x) A
The numerator of this quantity is constant, so the noise-to-signal
w
L. . —1/2 . N . .
- ratio decreases as M » which agrees with our prior conclusion.
.4 Thus we have determined that convergence of the shift-and-add
) algorithm is slow; however, in our simulations (Chapter 6), notable
= improvement has been achieved with sequences of only twenty frames. An
important conclusion suggested by this slow convergence is that it may
Lo
b well be advantageous to average fewer frames and achieve further
. deblurring by other techniques; for example, Wiener filtering, rather
- than simply continuing to increase M.
I.\
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the change of order of summation and integration in (4.22), yielding
s _(x) = § s_ . (x-x_).
m j=1 mj j
Then shift-and-add gives
M
s(x) = ) sm(x)
m=1
L ¥X
= ﬁﬁﬁl jlemj(x-xj)
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4.4.2 Effect of Nonisoplanaticity on Shift-anc-Add

For the entire preceding analvsis, we have made the assumption
8 )

of isoplanaticity. That is, we have assumed that the 1mage was formed

by passage of wavefronts from the entire object through one statistic-

ally homogeneous portion of the atmosphere, giving us a shift-invariant

point spread function. According to Daintv (1973), it has been found

experimentally that this assumption is invalid for star fields or

larger objects.

In this case, Equation (4.13) becomes

[ -]

sm(x) = J f(x')hm(x:x')dx' (4.22)

where we have ignored the contamination term cﬂ(x). The intuitive

approach 1s to decompose hm(x:x') into a spatial sum of shift invariant

point spread functions

hm(x) = hmj(x-xj)

LU st -

i=1

where K is the number of isoplanatic patches through which the object

wavefronts pass. One would then make convergence arguments allowing

W TR T YT Y T Y Y
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At this point the analvsis becomes intractable because K is a random

variable depending on the step m. Therefore, another approach should

be taren in order to achieve any results.

Bagnuolo (1984) has addressed this problem for the specific

case of the shift-and-algorithm applied to imaging of double stars.

In

an earlier paper (Bagnuolo, 1982), he has presented a slightly modified

shift-and-add algorithm and a method for calculating the intensities of

~he background, the two valid peaks representing the double star, and

*ne accompanving ghost peak.

Ratios of these intensities are then used

to compute the true intensity ratio for the two components of the

double star.

In his later publication (Bagnuolo, 1984), he has shown

tnat his method is invariant to the degree of isoplanaticity. This is

by no means a general theoretical result, but it may indicate that

nonisoplanaticity is not a serious problem in shift-and-add processing.
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CHAPTER 5
COMPUTER SIMULATION OF TURBULENCE DEGRADATIONS

In order to test the effectiveness of the shift-and-add

algorithm, especially for the case of extended object imaging, we next

performed simulations of the image degradations produced by atmospheric

of point spread functions have been computed, both
-

developed by McGlamery (1976) that considers onlvy

turbulence. Series
for an algorit:.
phase perturzations of the optical wave and for a modified version of
this algorithm, which also includes amplitude perturbations. These
point spread functions were then convolved with a simulated object. and
the resulting series of degraded object frames were subjected to

as discussed

shift-and~add processing and other restoration techniques,

in Chapter 6. In this chapter, we will examine the two algorithms for

computing point sprezad functions that we mentioned above.

5.1 Point Spread Function Simulation
for Phase Perturbations Alone

The first algorithm that we used for point spread function

3 : -
simulation was one developed by McGlamery (1976). 1In this algorithm,
he has considered only phase perturbations of the optical wavefront
since he claims that these are the dominant factor in image degrada-

tion. He also assumes, as is common (Strohbehn, 1968) that the

Kolmogorov spectrum

70
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?(f)

b 1s a valid description of the spatial pcwer spectrum of the phase at
ll the receiver, where C is a constant related to turbulence strength and
wavelength and f denotes spatial frequency. With these preliminary

o assumptions noted, we now summarize the algorithm.

- Step one consists of generating a complex array of Gaussian
- random numbers that are to represent the spatial frequency domain for
e the phase of the wavefront. (Phase is assumed to be Gaussian
'::|
distributed, as discussed in Chapter 2, which necessarily implies that
- it is also Gaussian in the frequency domain.) In step two, we multiply
-11/6 . .
the arrav by f , the square root of the Kolmogorov spectrum. This
[ (] factor introduces correlation into the point spread function, for
without 1it, one produces a random noise field rather than a speckle
pattern. The third step consists of Fourier transforming the arrav and
. separating the result into its real and imaginary parts. Each of these
arrays represents a map of phase at the pupil of the optical svsten,
v
w which we denote by ¢(u,v). In step four, we form the path length
difference map
£
- ¢ (u,v)A
v d(u,v) = ————
i
;‘
. where A denotes wavelength, and we note that this step is unnecessary
) f}: if one is considering monochromatic illumination. The intensity point
b2
3 spread function is calculated in step five as follows
[£o
]
X Y
h(x,v,A) = [F{p{u,v)exp(i2md(u,v)/»)}!
)
»
) »
T < . . .
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where p{u,v) is the pupil function of the telescope, ,'|° denotes the

squared magnitude of a complex quantity, and Fu"; refers to the fourier

zransform. The final step six is not computed in the monochromatic

case. It involves forming the polvchromatic point spread function

hix,v) = k

-1

where k is a normalizing factor required so that the value of the

transfer function at zero frequency is unity, and F()) is a weighting

function which depends on spectral distributions of source power,

atmospheric transmittance, and the image sensor. McGlamery (1976) also

discusses other factors necessary for scaling in computations of the

polvchromatic point spread function.

In our simulations, we omitted steps four and six, and we
varied the standard deviation of the Gaussian iterates in step one in
order to vary the strength of the turbulence, rather than changing the

constant C of the Kolmogorov spectrum. Furthermore, we ignored the

effects of the telescope pupil and set p(u,v) identically equal to
unitv. Examples of point spread functions simulated in this manner are
shown in Figure 5.1. It should be observed that these point spread
functions are of greater spatial extent than they appear in this

figure. The outer edges do not appear because of a lack of dynamic

range in the photographic process.
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Tigure 5.la. Standard deviation C from step one of the algorithm is
{u 2.5,

b

?.

i

’z>

H

#

Tigure I.0D T 1s 2.3,

.
"

_‘.\_,. ‘t vl -.“ e \_.‘
bﬁn\& N, M"L& T .4.4';&&‘\.{:3.\“ WA LA_{A.‘\,A. A




M ahh bl oo he o A= b s Al ded lab Sad Ml Rert Slas an Ba- b~ aAl-aig aNd Ma aea o0 @ ia 4w 0 a s ald o M Alaass aie a ) A ais i g ad 4 o o 4
N
] ‘.?.
hoi
=
m‘!
I
B
i 3
5.2 Point Spread Function Simulation Including
o Both Phase and Amplitude Effects
‘e
: For the sake of completeness and also because amplitude
_. perturbations are important 1n the assumption of lognormal intensity
statistics (see Chapter 2}, we modified McGlamery's algorithm
f{ (McGlamery, 1976) to include the effect of amplitude perturbations.
- Adccording to Strohbehn (1968), the log-amplitude spatial power specirum
.‘3 . ‘ -11/3
- is also proportional to the Kolmogorov spectrum f , and we know
f: from Chapter 2 that log-amplitude is also governed by a Gaussian
&~
probability distribution. Therefore, simulation of amplitude effects
proceeds in much the same manner as the simulation of phase effects in
section 5.1,
(] Step one consists of generating a complex array of Gaussian
e rar. numbers that represents the spatial frequency domain for
, . - -11/6
log~amplitude. In step two, the array is multiplied by f , the
. square root of the Kolmogorov spectrum, in order to introduce correla-
tion. We then Fourier transform the array and separate the result into
., its real and imaginary parts for step three. Each of these arrays
r represents a map of log-amplitude, denoted logA, at the telescope
-
N pupil. Using the phase map ¢(u,v), which is generated by the method of
b
| A . . . ‘
b section 5.1 and assuming monochromatic light, we complete the fourth
Y
and final step of the algorithm, the formation of the intensity point
spread function
; -
4 ’
|«
[] .“'
Do
»
YL
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r)
% h(x,y) = Fip{u,v)exp(logd + id¢(u,v)} ©
N . - | C2
- where as before, Fi{-; denotes Fourier transform, ;-,” indicates squared
- magnitude of a complex-valued quantity, and p(u,v) 15 the pupil
- funcrion of the telescope which was set identically equal to unity in
V‘ all of our simulations.
- Zxamples of the point spread functions simulated by this
< procedure are presented in Figure 5.2. The phase variations in this
- figure are statistically the same as those of Figure 5.1, so any
T
. difference is due to amplitude effects. As we see from Figure 5.2, the
}J main effect that the amplitude perturbations have is a general blurring
b of the pocint spread function, and therefore, of any image convolved
: with it. This will be more clearly seen in Figure 6.3 of the next
-~ chapter.
- 5.3 Effect of Setting One Pixel
» Equal to One Speckle
- The simulation of point spread functions discussed in sections
E 5.2 and 5.3 results in speckle patterns in which each speckle is
}
& represented by a single pixel. In reality each speckle has a spatial
; extent on the order of the size of the Airy disc of the telescope
ﬁj (Dainty, 1975), so what one is actually simulating by the above
? algorithms is integrated or averaged speckle. As we have assumed
|
- throughout that the intensity at each point of the speckle pattern is
3 distributed lognormally, we have a sum of partially correlated
)
p lognormal random variables. This is exactly the situation of section
3
‘ :: 4.4, where the weighting function is equal to one. As in this previous
4
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S Figure 5.2. Point spread functions including both phase and amplitude
degradations. ~- Phase is statistically identical to that
' of Figures 5.la and 5.1b.

a. Phase corresponds to that of Figure 5.la with severe amplitude
degradation.

He

L b. Phase corresponds to that of Figure 5.l1b with less severe ampli-
tude degradation.
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L (( Figure 5.2a. Phase corresponds to that of Figure 5.la with severe
amplitude degradation.

Figure 3.2b. Phase corresponds to that of Figure 5.1b with less severe i
amplitude degradation.
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analvsis, we expect that this integrated or averaged speckle will be
approximately Gaussian distributed when the number of random variables

averaged is large (Barakat, 1976)., but will be better described by a

~ B

lognormal distribution when fewer random variables are averaged

»

l"ll a

»

(Mitchell, 1968). As we are averaging over an area the size of the

v

Airv disc in this case, we would expect relatively few pixels to be

.
N averaged, implying that a lognormal distribution is appropriate. In
e our simulations, telescope effects were ignored, which is equivalent to
- assuming an infinite pupil and thus a point source Airy disc. For this
~ case, one pixel actually represents one speckle; but in more realistic
“a
o’
cases, statistics of integrated speckle rather than simple speckle
"
18 should be used in simulations.
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N CHAPTER 6
2 RESTORATION OF SIMULATED IMAGES
<
S o i _ _
~' In this chapter we shall attempt to restore images degraded by
{j- atmospheric turbulence using shift-and-add processing alone and then
- combining shift-and-add processing and Wiener filtering (actually
1
o pseudo-inverse filtering in the absence of noise) in order to confirm
XY
¢ our previously obtained theoretical results. Restoration will be
:b possible only if the derivations of Chapter 4 are correct, that is,
. only if diffraction-limited information is indeed preserved by
‘% shifi-and-add. Otherwise, residual blur will be apparent in the final
N ,
o results because of loss of high frequency information. i
o i
. Using the methods described in Chapter 5, we have generated !
w
i
'I series of twenty point spread functions (psf's) for varying degrees of !
turbulence and have convolved these psf's with an undegraded image. We
o emphasize that in these simulations, no other degradations {(e.g.,
i' photon noise, sensor noise) have been introduced, although thev are
5 certainly present in actual imagery.
" In a previous study (Hunt, Morgan and West, 1983), we have
; described the simulation and restoration of degraded images using a
joo
" simulated silhouette of an airplane as the original image. However,
!% Bates pointed out that the use of such a large object with a small psf |
L2 |
’9- is a contradiction of reality. 1In order to simulate a more realistic
¢ !
. &. ]
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situation, we nave used for our undegraded image a small circle at gray

m

1} -
Ay o

tr. a dark (gray level 0) and a bright (gray level 192)

P

ieve

e At Mg

g

spot :in the nterior. The circle 1s of approximately the same spatial
p %

AN S

extent as the smallest psf considered, and we added the interior spots
in order to test the ability of our processing to restore detaill other

than the object outline. The undegraded image is intended to represen:

N “.Pp.'/‘:.-.-*"r . ".A'

'

[

a fairly large astronomical object, and therefore, we have aliso inclu-

.

ded a "star” (point source) at gray level 255 in the frame in order to

'.A &t

a
.

allow us to estimate the overall ps{ of atmospheric degradation plus

< —

shift-and-add processing. This psf is used in further deblurring after
sh1ft-and-add. Our undegraded image is pictured in Figure 6.1; a

series of degraded images with only phase perturbations {corresponding

align.
q‘ “~,. ‘e,

to the psf's of Figure 3.1) is shown in Figure 6.2; and both phase and

.

o

ot

amplitude variations (corresponding to the psf's of Figure 5.2) are

included i1n the degraded images of Figure 6.3.

5.1 Shift-and-Add Processing

i' with series of degraded images at our disposal, our next step
a
Jié is restoration, which will first be attempted by shift-and-add
i | processing alone. Figure 6.4 depicts the results of shift-and-add of
;;% twenty images (corresponding to Figure 6.2), which have been distorted
! l.g by phase variations alone, and the shift-and-add results for both phase
: ;i f and amplitude degradations (corresponding to Figure 6.3) are shown in
E < ‘ Figure 6.5. We note that there is comparable improvement in the case
g i of both phase an¢ amplitude corruptions relative to the phase
¢
9
.‘
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Figure 6.1.

Original undegraded image.
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Figure 6.2.

Object blurred by convolution with psf's containing phas
degradations only.

a. Blur produced by psf of Figure 5.1a.

b. Blur produced by psf of Figure 5.1b.
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rgure 6.2a. Blur produced by psf of Figure 5.la.
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Tigure 5.2b. Blur produced bv psf of Figure 3.lb.
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Figure 6.3, Object degraded by convolution with psf's containing botn
phase and amplitude degradations.

S
; ) a. Blur produced by psf of Figure 5.2a.
-
S b. Biur produced by psf of Figure 5.2b.
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Tigure 6.3b,

B8lur produced by psf of Figure 5.2b.
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Figure 6.4. Shifr-and-add results for the averaging of 20 1mages

degraded by phase perturbations alone.

t- Shy ft-and-add result for 1images degraded as in figure 6.2a.

-
e

Shifr-and-add result for images degraded as 1n Figure 6.2b.
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ure 6.4a.c Snift-and-add result for 1images degraded as in
6.2
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hif:-and-add result for 1mages degraded as 1n
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hifr-and-add results for the averaging ot 20 imaaes

IS
degraded by botn phase and amplitude perturbations.

wn

Figure 6.
e a. Shifr-and-add result for images degraded as in Figure 6.3a.

Shift-and-add result for images degraded as in Figure 6.3b.
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igure 6.35a. Shift-and-add result for images degraded as in Figure \
. 3a.
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rigure €.5b. Shift-and-add result for images degraded as 1n
6.3b.

- . > “ TN
<o o W T R -
.'s?.'d.n'-b} oy d:ﬂ:\" ‘&M ~ ‘m....a).a..:. J\.A’ :\:'J:f .J'l.'.'.'.f".-f.




e D St i Ead ok il el Aad e oh Sl Bok S0 Ak Sb Gl M A LA Bl s 2 b a od o Ml ool g g o
o b el bl td Aah cad 0d ol cd und o]

85

degradation onlv case; and just as one would expect, the restoration 1s
better for milder turbulence.

It is worthwhile at this point to note that although the grav
level of the "star” or point source is higher than that of the braight
interior spot in the object, the bright spot is larger in area, and the
maximum value chosen from each frame by shift-and-add is a speckle
generated by the bright spot. This observation implies that
shift-and-add processing mav well lead to a substantially improved
estimate of the object as long as there is a relatively small bright
area, not necessarily a point source, present in the object. Thus
shift-and-add mav be useful processing for a larger class of natural
imagery than simply images of astronomical objects. One would expect
the registration of the images to be less accurate in such cases,
resulting in a more blurred shift-and-add image; however, as seen in

the following sections, the overall point spread function of the blur

may be estimated or measured and then removed by Wiener filtering.
- We have further noted confirmation of our estimates of the

convergence of this algorithm as discussed in section 4.4. 1In a prior

”
E: report (Hunt, Morgan and West, 1983), we noted a comparison of
o shift-and-add results for twenty and fifty frames in which we observed
P
SR no visible improvement in the fifty-frame result over the twentyv-frame
0 result. This accords well with our determination that the algorithm
b 1 ‘ |
| converges as M /2 (where we recall that M is the number of frames
‘ b
i "
l o averaged).
e,-
[
i ﬁ'.
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Finally, we note that while there 1is considerable improvement

- in the shift-and-add results over a single short exposure frame or over
a simulated long exposure image (Figure 6.6), there is still a sizable

'“ amount of blur present. The following sections are devoted to removal

of this residual blur.

6.2 Determination of the Overall Point Spread

. e
. Function for Atmospheric Degradations
T Plus Shift-and-Add Processing

v In order to apply further restoration techniques to the

A
: shift-and-add image, we must measure or estimate the point spread
?‘- i
{. function (psf) for the entire process. If a point source such as our !
- simulated "star" is included in the original object, the psf may simply
3k be extracted from its shift-and-add image. This is the approach we
3
> have used in our restorations; however, in cases of severe degradation,
2
i subtraction of background biur from the psf is necessary.
We also used a Gaussian least-squares fit to the point spread
.'_f
i function in some restorations. This is because, in the limit of large
e
T4 . . :
) M, we expect the point spread function to approach a Dirac delta
;. function (or very narrow function) riding on a broad, smooth function
%’ as in Equations (4.18) or (4.21) and the following discussion. Thus we
[ are assuming a Gaussian form for this smooth function. This mav be a
e
!‘ useful approach for estimation of the psf when an auxiliary point
dE source is not present in the object if one can find a valid method of

determining the variance of the Gaussian.
|

hJ

If there is no point source present in the object, it mav also

be possible to estimate the psf from the edge response of the object

J
& |
]
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Comparison of shift-and-add and simulated long exposure

images. -- Both were generated from a series of 20 1mages
degraded by phase perturbations alone.

Shift-and-add.

Long exposure.
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{Tatian, 1965; Tescher and Andrews, 1972). This type of procedure will

t: work best if the object is fairly large, containing large sharp edges,

!’ a fact which will limit 1its usefulness in astronomyv. However, in this

B case a nearby star is often present, as was assumed in our simulations.

.

e 6.3 Wiener Filter Restoration

- We now assume that we have obtained our desired point spread

h function, whether measured or estimated, and proceed with the

;} deblurring. In our previous work (Hunt, Morgan and West, 1983), we

) used both the Wiener and Cannon filters (Andrews and Hunt, 1G677) but

o subjectively determined that better results were achieved with the
wiener filter. Therefore, we shall use the Wiener filter in our

'. present restorations and shall employ the following form of the filter

. o) = )

H(u,v) |~ on®/ec(u,v)

where H(u,v) is the Fourier transform of the psf, * denotes complex

. H . .
conjugation, | .| indicates the modulus of a complex-valued function,
f’" . . 2 . . .
*f(u.v) 1s the object power spectrum, and Gn 1S noise variance. e
~
il have not actually measured or estimated a value for 0; but have simply
considered a constant which is varied to achieve the best restoration.

Also, we used the actual ¢f(u,v) which we determined from the

undegraded image although in practice, this is not known and must be

estimated from the degraded image. Often, one would have some

information such as the expected object shape that will help in these

estimations.
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Now, letting S(u,v) represent the Fourier transform of the
:EZ shift-and-add image, our estimate 2(x.y) of the object is
a fixov) = FF {S(u, v)W(u, v)}
= where as usual, F-3-} denotes the inverse Fourier transform. In order
) to achieve good results in cases of severe degradation, 1.e., minimize
s: "ringing," we were forced to smooth the sharp edges between the images
- and the zero backgrounds which were added as padding for the Fourier
é; transforms. We found this to be necessary both in the shift-and-add
o 1mage and the measured psf, and it was accomplished by multiplying the
f:
) images by wide Gaussians.
ii These restorations have been performed for the shift-and-add
1mages depicted in Figures 6.4 and 6.5, and the results are shown in
E; Figures 6.7 and 6.8. From these figures we can see that the Wiener
filt r has done an excellent job of removing blur left in the
|
. shift-and-add images--the outlines of the object are sharp, and the
- interior spots have been well-reconstructed. It is important to note
) here that this ability to reconstruct the original object may be
S? regarded as confirmation of the theoretical results of Chapter 4--
diffraction-limited information is indeed preserved by shift-and-add,
]E at least in the absence of noise.
We have also performed Wiener filtering in a few cases with a
) Gaussian least-squares fit to the measured point spread function {(as
\ éi discussed in section 6.2), and one such outcome is shown in Figure 6.9.
Some blur still remains in these images, and we attribute this to the
™
S :
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the shift-and-add images

Figure 6.7. Wiener filter restorations of
image was degraded by

. depicted in Figure 6.4, -~ Original
. phase perturbations alone.

a. Wiener filter restoration of the image in Figure 6.4a.

) b. Wiener filter restoration of the image in Figure 6.4b.
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e 6.7a. Wiener filter restoration of the image in Figure %.4a.
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Figure 6.2,

a.

b.

Wiener filter restorations of the shift-and-add images of
Figure ©6.>. -- (Original image was degraded by both phase

and amplitude perturbations.
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Wiener filter restoration of the image 1n Figure

Wiener filter restoration of the image 1in Figure 6.5b.
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fact that only twenty images were processed by shift-and-add. As noted

in section 6.2, this Gaussian approximation should improve as the

number of frames processed increases. Even with this remaining biur,

the 1nterior spots are clearly visible, and we have observed some

improvement over shift-and-add alone.

in practice, one would not expect such good results as obtained

in Figures 6.7 and 6.8 because of noise, lack of information about the

exact form of the object power spectrum ¢f(x.y), possible "ghosts" in

the shift-and~add image and possible problems in obtaining the overall

psf; nevertheless, Figures 6.7 through 6.9 indicate that shift-and-add

prccessing plus Wiener filtering shows promise for restoring images

degraded by atmospheric turbulence or other random media.
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CHAPTER 7
CONCLUSION

In this dissertation, the task was undertaken to analvze the
shift-and-add method in order to provide a better understanding of why
it creates improved versions of images degraded by atmospheric
turbulence.

We first provided the necessary statistical framework and image
model for this analvsis along with a brief summary of other imaging
methods emploved in the presence of turbulence. Then, in Chapter 4, we
demonstrated that the result of shift-and-add processing of a series of
short exposure images may contain diffraction-limited information, both
in the point source object and in the extended object cases. Ve also
showed that the probzbility of error in such processing is relatively
low, although the results were obtained for a noise-free case.
further, we presented a convergence rate for this algorithm which is
initially fairly rapid, but which slows considerably as the number of
images processed increases. This result suggested the restoration
method applied in Chapter 6: use shift—énd-add to average relatively
few images and achieve further improvement by another method.

In support of this analvsis, we presented simulation results
which demonstrated the effectiveness of the shift-and-add method,

especially when combined with Wiener filtering. When one considers

a4
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that these results were obtained by processing only twenty images, the

BT |

: performance of the algorithm becomes even more impressive.

As a further note in support of shift-ana-processing, our
* previous work (Hunt, Morgan and West, 1983) indicated that it 1s of
- value in reducing the error in features extracted from turbulent

images. The specific feature extraction algorithm considered was

~

ﬁ; invariant moments (Hu, 1962), and in almost all cases we found that the
o moments of the shift-and-add processed images were lower in error than
.

T

a4 were the moments of the unprocessed speckle images.

7.1 Suggpested Extensions of this Work

The most important theoretical extensions to this work would be

n '

to remove the assumptions of isoplanaticitv and stationarity, and

-

rederive the point spread function under these new conditicns.

i

" However, due to the extreme difficulty (or even impossibility) of

Il achieving an analytic result when these assumptions are removed, this

A might well be a point of diminishing returns.

Eﬂ A further theoretical extension would be to repeat the analvsis

!; with the addition of noise; however, in this case one runs into the

-4

o problem of determining the probability density function of speckles

;; plus noise. The speckles are lognormally distributed, and the
lognormal distribution does not possess an analytic characteristic

:5 function, so the density function of speckles plus noise would

A necessarily be an approximation.
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) It is likely that effort would be better spent extending this

-~

t: algorithm to deal with practical problems facing its use in specific

! applications, since the major theoretical results have been determined.

- One such practical problem is that of obtaining a good estimate of

fi ¢f(u,v) for the Wiener filter, and it might well be worthwhile to

investigate the dependence of restoration quality on the accuracy of

et

. such estimates. Another problem is found in astronomy, where one may

o face extremely low light levels, say a photon or two per frame.

tf Therefore, in conclusion, we emphasize that such difficulties are

- likely to be the most fruitful avenues for research on shift-and-add

processing.
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APPENDIX A

THE LOGNORMAL DISTRIBLUTION

:
" In this appendix, we present some of the basic properties of
f! the lognormal distribution, as 1t appears to be generally unfamiliar,
B and comment further on the property that the lognormal probability
ELE density function 1is not uniquely determined by 1its moments. For
N further 1information on the lognormal distribution, the reader is
:i referred to Aitchison and Brown (1957) or Johnson and Kotz (1970).

T, The twe-parameter probability density function of a lognormal

random variables X takes the form

. -
~ ! gx -~ l'
pix) = exp {- o xq 2 y (x > 0) (A-1)
Xz ¢ 27 25°
! where log X is normally distributed, log denotes the natural logarithm

2
{base e). u is the expected value or mean of log X, and ¢~ is the

- variance of log X. Following Johnson and Kotz (1970), the nth moment
® of X is
-

29
] n E[x"] = QN+ 1/2n“0 (A=2)

so that the mean is
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The central moments mav be computed from the general formula
mn/: n
2 ; —3Y(ne ie
my o= ——— 1 (-DIHuIA0mmD (A-3)
(w-1)777 j=0 ’
where
2
w = ec
The distribution is unimodal, with
2
mode(X) = R
and
u-

median(X) = e

Also, as 0 -> 0, the distribution tends to a normal distribution,
Analogs to the Central Limit Theorem also exist for products of

random variables. Just as sums of independent random variables are

approximately normally distributed under certain conditions, so under

similar conditions are products of independent random variables

approximately lognormally distributeZ. For more specific statement of

the lognormal Central Limit Theorem and for extensive results on

estimation of parameters for a lognormally distributed population or

data set, see Aitchison and Brown (1257).

We now address the property that the lognormal distribution is

not uniquely determined by its moments, a property of interest in

Chapter 2. In the usual case (Papoulis, 1965), if we know the moments

m of a random variable, we may determine its characteristic function

v{u) by the following expression.
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d(u) = 1 + iuml + .. .+ —m_ +

where i denotes the square root of -1. Inverse Fourier transforming
l! then vields the probability density function. However, Hevde (1963)

and later Barakat (1976) have proved that this result is not unique for

3 the lognormal distribution. Heyde (1963) has presented another

- distribution with density function

. NSO o

> f(x) = — exp {- l¢2g53gl } {1 +¢ sin[=——(logx—u)]} , x>0
<y Oxv 2T 26°

Fa (A'A)
&

£

where 0 < € < 1 and k is a positive integer, which he claims has the

a

same moments as the lognormal random variable X with the density

function p(x) of Equation (A-1).

To see this result, we consider the difference in moments of

' the two distributions

N «© - -]

i X

o~ I n

» I = J x p(x)dx - J x £(x)dx n=20,1, 2,
0 0

©
-€ Jlxn-l exp{ M—U- }sm ——- (loox-u)]
202
0

'.,.

:-P, Cv om

>

;' We make the change of variable
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- lozx-u
. y ==
T- giving
- e ) -
b 1 /
-ee™ [ _1/2yTency . 27K
1= Loe . * sin|=——v]dv
. e J of
~ Y- -0
-
~ nNu+i/2n 02 2
-cte ~1/2(y-ng) .21k
= e sin| v ]dy
y 2
=0
- , . N
. because the integrand is odd. Therefore both distributions (where
| actually f(x) determines a whole familv of distributions by varving the
L4
s parameters £ and k) have the same moments.
2
7
B
B
h A
B 5t
\ 7,
z ",
X}
R}
R\
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! -‘n
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APPENDIX B

EVALUATION OF INTEGRALS

In this appendix, we evaluate two integrals from Chapter 4
which arise in the determination of the overall point spread function
of the shift-and-add process.

We will first evaluate the following integral

E[1,11,) = } Lp(L, 1) )dl,
0
- | frog. v N, fiogr.nlV R WA LTI 7i
= dl.exp 2 = ;
<- IM(i- 0 0 | 2!1-.’::‘ /

Expanding the exponent in Iquation (B-1) gives

- o)
02 ;ogI,‘-ul . loglz-u: 2 1og11-u1 xogIz-u2
% <, o, 5
logl. -k.\? logl 2
= < o8 l-ul + ""u_z ¢ 1 + 2
1 2\ 4 o,

-
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where we have collected terms according to cheir dependence on loc¢

x Thus Zguation (B-1) becomes
! B A E RN S L SR W ]
e bl I 3 + X — — T zT ‘
- ~r e ey i 1 v 1 22
R exp =
- - A V2 (1-27) 2 (1-29)
® N (logl )° - 2(n /02 . P logl. -i .
? ; 3; 2 = 2772 clc7 ( og 1 “1))10g12
. X J exp = - 2 d12 ‘
0 2(1-07)
(B-2) H

we now consider the integral portion onlv of this expression and let

. : : 2 2 .
- | = (3 - 20  —— I -y
. = [~: (loglz) -(AZ/C:, 5. (logLl Ll))xoglz]
- - . dI, .
. N.o= ., exp Py <
o 0 2(1-p%)
n (B-3)
o To evaluate this integral, we make the following change of variable in
- Zquation [ 32=2:
-
e t = log I?_ {
. t
.. dl, = e dt
- 2
Then
o(iogl,-u.)
. 1 )
@ ol uﬁ/c‘\ + he 1-0 )
: -t <& - OlC,,
. INT = | exp 5 TN < —=2 + V dt
.'s 4& 5 G-e%) (1-c%)
. (P
.
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which we evaluate bv using Gradshtevn and Jvzhik 1930,

it 1s stated tanat

2 ot T
exp{-p7x~ + gxJdx = exp[—-i]i;

.1p

(e

¥

, p - Q.

From Equation (B-4), we make the correspondences

PZ 1
2620107
2
logl, -¥, 2
H2/C 5,9, + (1-67)
q:
(1-6%)

=
1/p = cV2(1-c%)

u2 ¥ logl, -¥ logl, -u logl, -+
2 2 1” ) 2 081 7+ 2
L = et (L A} (16d) . o2 LA, 2000t R
< < CP) al 2 2 2 c 2
a 02 01 1
3" -
4p 2(1-0%)

Thus we have

2
us b, logll-u logl, -u logl,-v, o 5
g <—°-—‘ uy(1-0%) oz<——i—l < 20.0(1-¢%) <c—‘> cl(i-c7)
a } 'y “ ) -
INT - exp 2 ]
21-0%)
X S, VZTT(l-DZ)

and substituting this expression into Equation (B-2), we obtain

&-..-._---f-) \ "I'
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o ‘1 T ~ I~ YA ~2 1 ﬁ2 197
_112 *L] = expii, +(c /Vl)olog 5 —[b: “l)”“l + 42( -07) /2
=C./C, . - .
I ~ ~ e oASN 0
= Il expii, - "leﬁ/cl - -2(1 Y,/ 2.

we now evaluate the 1integral expression E[I7Il], which is

needed in order to determine the correlar:on coefficient of Il and I.,.

This expectation takes the form

oo oo
rf
ELIZII] = jj IZIlp(IZ'Il)dIZdll
00 - ﬁ q
. K’ml‘“x)‘ . (_1,°“:"':>- - 2% <1°311'“1>< l°8‘:"“':>
. .. c. Ca < z, za
= = : ex - - 2 ~ =
3ms s Uiz OC 2(1-29)
(B-5)

We make the changes of variables

iogly-¥
S =
°1
and
iogl -y,
t = s
2
and obtzin
U +H, ©
172 tr 0,5+0,t 2,.2 4
- t--22st
E[1,1;]} =< Je e exp{ [s™ ,J dtds .

- /1-02'“’"” 2(i-0%)

(B-6)

-
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First we evaluate the t integral

co

1 . ps+Cc,(1-07)
It=Jexp — T+ —=— tp dt
2(1-c%) (1-07)

bv using the same formula from Gradshtevn and Rvzhik (1980)

exp[-p“x” + qx]dx = exp == ey p >0

4p \

In this case, we make the correspondences

"

pl o1

so That

1
[}
()
£
o~
[
]
(o]
ro
SNt

Then

2 2
c‘i(l-o ) c ”
It = J2'rr(l—o ) exp{-———-‘ = + 0,08 + ——— s'} .
& - -

[ 3

Substituting in Equation (BP-6) yields

E(1,1,] =

2 2 3
exp {u, +p_s0 (1-0)/27 = s
A - - |I exp{‘
v2n J
=00

exp {u -0%? 2
= <1.> - 2 | exp{- > * (G +0c,)s) ds (B-7)
2 — J 2 2
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. : which is evaluated as was the t integral with
[ Y
: o
. p= = 1/2
: . q = Gl + 002
:; which implies that
" : V’-TT-/p = /5?
. 2 2 2 2.2
NG =0 Cc.C c
N, q~/(4p") /2 + P00, + P7C,/2
S N Then substituting in Equation (B-7) vields the desired result
4 "‘,
' 00,0,
Oy £ = -
b 1 _[Izll] <12><Il>e .
'
.
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